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Abstract. Several classes ofmodels have been proposed to describe the spatial processes. A
special class of non-separable spatial unilateral model for modelling spatial data on two­
dimensional rectangular regular grid is the spatial autoregressive model, denoted by

AR( PI ,1). In this paper, we establish a procedure to estimate the parameters of this model

using the maximum likelihood method. We show that thiS procedure is practical and easy to
be implemented We illustrate the procedure byfitting the AR(l, J) model to two set ofdata on
the regular rectangular grid. The results show that the model is adequate in capturing the
spatial correlation in the data.
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1. Introduction

A large amount of research in modelling spatial processes has been conducted and they have covered
various applications. Spatial series may be considered as a generalisation of time series, however
modelling it is more difficult since the dependence in spatial series spreads in all directions and it
encounters larger proportion of edge effects as compared to time series.

In this paper, consideration will be given to modelling spatial process in two-dimensional regular grid
where a random variable is defined at each intersection point. Various classes of models have been
proposed to describe the process. Among the earliest models of this particular process are the
Simultaneous Autoregressive (SAR) model (Whittle, 1954), the Conditional Autoregressive (CAR) model
(Besag, 1974) and the Moving Average (MA) model (Haining, 1978).

Many methods and procedures have been developed and proposed to overcome the estimation
problems in spatial modelling. Martin (1979, 1990 and 1996) studied a class of models called separable
models, while Tjostheim (1978 and 1983) and Basu and Reinsel (1992, 1993 and 1994) considered the
unilateral models. A special characteristic of separable models is that it has a product correlation
structure, which in tum simplifies the estimation. However, these models are only applied for data which
exhibit separable correlation structure. The unilateral models can be analysed using extensions of time
series theory in some special cases and are claimed useful in systems theory and digital filtering (see
Tjostheim, 1978).

A special class of non-separable unilateral model is the spatial autoregressive model, denoted by
AR( Pl ,1). Shitan and Brockwell (1996) have established the procedure to estimate the parameters of this
model where the approach is to transform the two-dimensional spatial series to a multiple time series,
treating one of the coordinates as a time index and the other as a multivariate index and then performed
the multivariate least squares estimation procedures. In this paper, we look at the problem of estimating
the parameters of this model from a different perspective. Our approach is to use maximum likelihood
method with some modifications at the border to simplify the parameter estimation.



(2.1)

In the next section, the construction of the weight matrices is presented. The derivation of the
procedure of estimation is discussed in Section 3. In Section 4, the numerical examples to illustrate the
procedure are given and finally the conclusions are presented in Section 5.

2. Construction of the weight matrices

We consider a spatial process in two-dimensional regular grid of size mxn. The non-separable spatial

unilateral autoregressive, AR( Pl ,1) model is defined as,

lit = aIOYi-l,j + a01 Yi,j-l + all Ji-l,j-l + ... +ap,oJi-PI,j + apllli-PI,j-1 + £ij'

i =1, 2, ... , m and j =1, 2, ... , n,

where {Yij} is a sequence of two-dimensional random variable with zero mean and the errors £ij are
assumed to be nonnally distributed with mean 0 and common variance d at site labelled (i,j), and aij's

are the parameters to be estimated.

By assuming that the unobserved values to be zeroes, and letting the observation vector,

Y = (Yll , il2' , YIn' Y21 , Yn , , Y2n' ... , Yml , Ym2 , ..., Ymn)' =(YI , Y2 , .. ·, Ym )', where

Yi = Oil, >'i2, , >in)' , i = 1. 2, , m and the error vector,

E = (611, £12, , £In' £21,622, , 62n' ... , 6ml' Cm2, ... , Gmn )' = (EI' E2' ..., Em)' , where

£j =(cil' £i2, £in)', i =1, 2 , m , we can rewrite equation (2.1) in the matrix form as,

~Q",1·····~..····I.._.~......I-..~----I-~~-:---L ...~...··-!.·······_~-------··! ..:·:·:··~······?_·t····?_·..l·····~_.
cJ)1 i cJ)o i 0 I 0 1 ... 1 0 ! 0 i ... i 0 ! 0 ! 0
·..·_..·-r···..··....·T·········--r········T-..·····r..····--..··T·····..··..······..·T-·..···..l........···--T--·..·-·t·----------
cJ)2 ! cJ)1 ! cJ)o ! 0 !... i 0 ! 0 i' .. i 0 ! 0 ! 0

=~:::~Ii.~:.=l··-;·~~~~[:.::I~=r-=:=..··[~~·~~~:~:.:I~:.J: ..~~~:..l~:~~T:~=
o : 0 i 0 i 0 i··· ! (1) I (1) I!' .. i cJ)2 ! (1)1 i cJ)o

! ! ! ! ! PI! Pt-! ! ! !

YI E1

Y2 £2

Y3 + 1:3

:

Ym £m

(2.2)

where (J) j 's are nxn matrices defined as.

0 0 0 0 0 ajO 0 0 0 0

aOI 0 0 0 0 ajl ajO 0 0 0

0 aOI 0 0 0 0 ajl ajO 0 0
())o= and ())j=

0 0 aOI 0 0 0 0 ajl 0 0

0 0 0 aOI 0 0 0 0 ajl ajo

for j = 1, 2, ... , PI'

Equation (2.2) can be written more compactly as,
Y = (J)Y + £, (2.3)

where <J) is NxN matrix, N = mn. It is clear that <J) is a lower triangular matrix with zeroes on the main
diagonal. Then, if we decompose en into 2PI + 1 matrices such that it isolates different parameters, we
obtain

Y = (alOWIO + aOlWOl + allWlI + ... + aplOWplO + apllWpll)Y + £, (2.4)

where, en = alOWIO + a Ol W01 + allWll + ... + aplOWplO + ap,lWpll and W;bj = 1,2, ... ,

PI ; k = 0, 1 are the NxN lower triangular weight matrices with elements ones and zeroes.



3. Maximum likelihood procedure for estimating the parameters

Equation (2.4) can then be written as,

Y= (I -(alOWlO + aOlW01 + allWll + ,.. + ap,OWp10 + ap,IWp,I))-1 E (3.1)

or

(3.2)

where 1 is an NxN identity matrix.
Therefore, the covariance matrix of Y , V is given as,

V = a 2
( 1 -«I> r l

[( } -«I> r l J. (3.3)

The square root of the determinant of V is given as,

IvI 1I2 = (a 2)NI2\(I_«I»-II. (3.4)

Since (I - «1» is the lower triangular matrix with diagonal elements I, I(1 - «I> r 11 = 1. This leads to

IVI l/2 = (a2 )NI2. (3.5)

Therefore, the likelihood function 1 is given as,

1= I eXP{-~YV-IY}
(2n")NI2\VI1/2 2

~ (27fF N 12(<r2 )-N /2 exp {- ~2 Y'[(I _",)-1(1_<1»-1r Y}

= (2Jl")~N12(a2 )-N12 exp{- _I_ y ,(} -(1))(1 -«I»V} ,
2u2

Thus we obtain the log likelihood, Las

N N 2 1" (36)L = - -In(27l") - -In(a ) - -Y (I -cJ) )(1 -«I»V. .
2 2 2a2

The partial derivative ofL with respect to a jk ,j = 1,2, ... , Pl; k = 0, 1 is given by

aL _~[ -Y'Wjk Y + ajkY'W.;k WjkY + I I arsY'W;,I' WjkY] (3.7)
Cajk U VrFjVs*k

forj = 1,2, ... , 5.

Equating (3.7) to zero leads to

[
ajkY'WjkWjkY + I. I arsy'w;.I,WjkY ] = Y'Wjk Y ' (3.8)

Vr*.1 Vs'#k

Therefore, denoting Zjk = W jk Y , the maximum likelihood for a jk ' S can be obtained by solving the

equation

Z;o ZlO ZOI ZlO Z~IO ZlO Z~ll ZlO alO Y'ZlO

Z;o ZOl Z(n ZOI Z~10 ZOl Z~lIZOl aOl Y'ZOl

Zio Zp,o ZOI ZPI O Z~jO Zp10 Z~ll Zp10 ap,o Y'Zp,o

ZiOZP1I ZOI ZPI 1 Z~IOZpll Z~lIZPll a p,1 Y'Zp,1



(4.3)

(4.1)

(4.2)

Zio zlQ ZOI zlQ Z~IO ZlQ Z~II ZlQ
-1

alQ Y'ZlQ

am Zio Zm ZOI Z01 Zp1OZ Ol ZpI1 Z01 Y'ZOI

or (3.9)

aplo Z;o ZP1 0 ZOI Zp10 Z~IO ZPIO Z~11 Zplo Y'ZpI O

a pl 1 ZioZplI ZOlZpl1 Z~IOZpII Z~IIZPll Y'Zp11

4. Numerical examples

We fit the AR(l, 1) model to two well-known data sets observed on regular grids to illustrate the
procedure mentioned above. The AR(l,l) model is defined as

Yij = alOlf-l,j + aOIJi,j-l + al1 Ji-l,j-l +Eij'

and hence, equation (2.2) becomes

YI «Ilo ! 0 ! 0 ! 0 !... I 0 I 0 I ... I 0 ! 0 lOY} I:}

~i.: :~!~::r!:2:~:I:_:~~~::1:::~~:r::~::.:1~:~-"-"[:::~:.:r::::~l:?::::I:~~~::::I::~"~~: y 2 1:2
Y3 0 ! «Ill ! (1)0 ! 0 !'" ! 0 ! 0 !'" i 0 ! 0 ! 0 Y3 + 1:3

Ym ~~~~:rH~~~~J~FfH~;~~~ Ym Em

From equation (3.9), the estimate of the parameters can be obtained by solving the equation

(
alQ J (ZiO ZlQ ZOI ZlQ Z; 1 ZIOJ-I (Y' ZIOJ
aOl = Zio ZOl ZOl ZOI Zi 1ZOI Y' ZOI

all zio Zll ZOI Zll Zi 1Zll Y' Zl1

where ZlQ =WlO Y, ZOI =WOI Y and ZII =WI I Y . The matrices WlQ ' WOI and WI I are the NxN
weight matrices given as

[f.t"-&+-g-"t'::'I""g'i."~ .."i'3] [~-f"~+~...!.:~.:"t-'&-"I-"g".t"g.] [~t-"g"-l":--f":-H"':""I-"g ..tg]
WIO = llt"T"!'''(rt~-:t""'ll"o''i"o W = 'O"'!"O""!"fi"\";";":"t"O"i""Ir!"O" and WI = 'o"1"'l)T"fri";"::TijT(fm .

~r~T~:l-"~"T~T;":l~' 0

1

"~T~T~:r~"T~T;-'-lri 0 "~r~l~'l-~-~"r~Tril~
Here, I is an nxn identity matrix and D is an nxn matrix defined by

[~ .r..~. ::: .z l z].
000 .. ·010

The computations are performed by a computer program written in S-Plus.
For the first numerical example, we consider the data set obtained in Cressie (1993) on wheat (yield of

grain) where the uniformity trial was conducted by Mercer and Hall (1911). The data are observed on
25x20 grid. Since the data is stationary and fulfils the normality assumption (from the density and the
Kolmogorov-Smimov test), no transformation is needed. Table I displays the sample spatial correlations
of the mean-corrected data for s = 0 to 4 and t = -4 to 4, where s is the lag in west-east direction (between
columns) and t is the lag in south-north direction (between rows). The table suggests that there exists a
considerable amount of spatial correlation in the data, and the correlation is much stronger along the
south-north direction (between rows) than along the west-east direction (between columns), for example,
POI = 0.494 and P02 =0.357 (correlations along the south-north direction at lags I and 2, respectively)

whereas Ao = 0.280 and P20 =0.140 (correlations along the west-east direction at lags I and 2,
respectively).



Table I: Sample spatial correlations, Pst for the wheat

(yield of grain) mean-corrected data of size 25 x 20
obtained in Cressie (1993).

s
0 1 2 3 4

-4 0.282 0.066 -0075 0.095 -0.026
-3 0.303 0.063 -0.011 0.094 -0.006
-2 0.357 0.114 0.001 0.117 0.022
-1 0.494 0.167 0.021 0.134 0.056

t 0 1.000 0.280 0.140 0.166 0.065
I 0.494 0.212 0.112 0.160 0.046
2 0.357 0.152 0.081 0.192 0.084
3 0.303 0.096 0.057 0.176 0.045
4 0.282 0.106 0.062 0.157 0.068

The maximum likelihood estimate of the parameters is obtained using the equation (4.3) and is shown
in Table 2, together with the estimates of (-2 In L) and if. The goodness of the fitted model is examined
by the spatial correlations of the residuals. The correlations of the residuals from the fitted model are
small and these suggest that the model is adequate in capturing the spatial correlations in the data.

In the second numerical example, we analyse the data set on the yield of barley from an agriculture
uniformity trial experiment at Plant Breeding Institute, Cambridge, United Kingdom and the data is
obtained in Kempton and Howes (1981). The data set are of 7x28. The plot of the data shows that it is not
stationary and therefore a transformation is needed to make it stationary. In this analysis, we apply the
spatial variate differencing where the first row differencing is performed and the result shows that the
resulting series has no apparent trend, suggesting that the transformation is sufficient to make the data
stationary. Furthermore, the density plot and the result of the Kolmogorov-Smirnov test suggest that the
data satisfy the normality assumption. Table 3 displays the sample spatial correlation of the mean­
corrected original data, whereas Table 4 displays the sample spatial correlation of the mean-corrected
values of the differenced data. Having satisfied the stationary and normality assumption, we fit the
AR(l,l) model to this differenced data and the results are displayed in Table 5. Again, the correlations of
the residuals from this model are small and these suggest that the model is adequate in capturing the
spatial correlations in the data.

Table 3: Sample spatial correlations, Pst for the

yield ofbarley mean-corrected data of size 7x28
from Kempton and Howes (1981).

s
0 1 2 3 4

-4 0.470 0.220 0.053 0.035 -0.035
-3 0.570 0.231 0.037 0.015 -0.065
-2 0.677 0.241 0.041 0.026 -0.063
-1 0.796 0.253 0.035 0.DI5 -0.075

( 0 1.000 0.264 0.013 -0.Q25 -0.097
1 0.796 0.190 -0.045 -0.060 -0.101
2 0.677 0.137 -0061 -0.064 -0.075
3 0.570 0.088 -0.063 -0.065 -0.055
4 0.470 0.044 -0.079 -0.073 -0.051

Table 4: Sample spatial correlations, Pst for the

mean-corrected of first row-differenced yields of
size 7x27

s
0 I 2 3 4

-4 -0.064 0.010 0.079 -0.052 0.021
-3 -0.030 0.035 -0014 -0.024 -0068
-2 0.005 -0.020 -0.018 0.030 0.014
-) -0.206 -0.042 0.020 0.048 0.004

I 0 1.000 0.182 0.077 0.000 0.005
1 -0.206 -0.052 -0108 -0.070 -0.094
2 0.005 0.029 -0.012 -0.022 ~0.019

3 -0.030 -0.060 0.061 0.002 0.043
4 -0.064 0.006 -0.027 -0.058 -0.034



5. Conclusion

In this paper, we have proposed a procedure to estimate the parameters of the spatial non-separable

unilateral autoregressive models, i.e. the AR( PI ,I) model using the maximum likelihood method. The
procedure is practical and easy to be implemented. We have illustrated the procedure by fitting the model
for PI = I to two set of data on the regular rectangular grid. The results show that the model is adequate

in capturing the spatial correlation in the data; hence, we conclude that this class of model and the
estimation method proposed can provide as an alternative for modelling spatial data on regular
rectangular grid.
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