NINTH INTERNATIONAL CONFERENCE ON

PARALLEL AND DISTRIBUTED COMPUTING,
APPLICATIONS AND TECHNOLOGIES

PDCAT 2008

s = L

UNIVERSITY OF OTAGO, DUNEDIN, NEW ZEALAND
1-4 DECEMBER 2008

Editors: Zhiyi Huang, Zhiwei Xu, Nathah Rountree, Laurent Lefevre, Hong Shen, John Hine, and Yi Pan

t

FEE ‘

b computer
society ; .,
' ™ W W Ol : ENABLED BY

NEW ZEALAND KA R E N




Proceedings

Ninth International Conference
on Parallel and Distributed Computing,
Applications and Technologies

Dunedin, New Zealand
1—-4 December, 2008

Editors :
Zhiyi Huang, Zhiwei Xu, Nathan Rountree, Laurent Lefevre,
’ Hong Shen, John Hine, and Yi Pan

Sponsors
KAREN — The Kiwi Advanced Research and Education Network
University of Otago
World 45
Los Alamitos, California |EEE

Washington * Tokyo | Compgé%:éty




All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: TEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P3443
BMS Part Number CFP08536-PRT
ISBN 978-0-7695-3443-5
Library of Congress Number 2008934987

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center [EEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office
10662 Los Vaqueros Circle P.0. Box 1331 Watanabe Bldg,, 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama
Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: +81 33408 3118
http://computer.org/cspress customer-service@ieee.org Fax: + 81 3 3408 3553
esbooks@computer.org tokyo.ofc@computer.org

. Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Lisa O’Conner
Cover art production by Alex Torres
Printed in the United States of America by Applied Digital Imaging

IEEE

@ computer CPS.:

soclety bt 4

IEEE Corﬁputer Society
Conference Publishing Services (CPS)



Table of Contents

Prlu o nq
— . -
P e N S |

“Z—"" PDCAT 2008

Message from the General Chairs xi

Message from the Programme Committee Chairs xii

Conference Organization xiii

Program Committee xiv

Reviewers xvi

Keynotes

Looking toward Exascale Computing 3
Pete Beckman

Virtual Organizations by the Rules .
Carl Kesselman

Case Studies in Computer Network Measurement 3
Tony McGregor

Grid Computing Systems

A Layered Virtual Organization Architecture for Grid 9
Yonggqiang Zou, Li Zha, Xiaoning Wang, Haojie Zhou, and Peixu Li

Operating System-Level Virtual Organization Support in XtreemOS 17
An Qin, Haiyan Yu, Chengchun Shu, Xiaogian Yu, Yvon Jegou, and Christine Morin

Scalable Contract Net Based Resource Allocation Strategies for Grids 25
Ravish Mahajan and Arobinda Gupta

An Experimental Analysis for Memory Usage of GOS Core 33

Xiaoyi Lu, Qiang Yue, Yonggiang Zou, and Xiaoning Wang



Parallel/Distributed Algorithms
A Data-Parallel Algorithm to Reliably Solve Systems of Nonlinear Equations

39

Frédéric Goualard and Alexandre Goldsztejn
A New Iterative Eliiptic PDE Solver on a Distributed PC Cluster

47

Norhashidah M. Ali and Ng Kok Fu

An Effective Structure for Algorithmic Design and a Parallel Prefix Algorithm on Metacube
Yamin Li, Shietung Peng, and Wanming Chu

54

62

A Parallel Algorithm for Block Tridiagonal Systems
Heng Zhang, Wu Zhang, and Xian-He Sun

66

An Efficient Parallel Algorithm for H.264/AVC Encoder
Shuwei Sun and Shuming Chen

Parallelization and Acceleration Scheme of Multilevel Fast Multipole Method

70

Wu Wang, Yangde Feng, and Xuebin Chi
Parallel Approximate Multi-Pattern Matching on Heterogeneous Cluster Systems

74

Cheng Zhong, Zeng Fan, and Defu Su

Parallel/Distributed Architecture

Switch-Based Packing Technique for Improving Token Coherence Scalability

83

Blas Cuesta, Antonio Robles, and José Duato
Location Consistency Model Revisited: Problem, Solution and Prospects

91

Guoping Long, Nan Yuan, and Dongrui Fan

99

An Enhancer of Memory and Network for Cluster and its Applications
Noboru Tanabe and Hironori Nakajo

Honeycomb: A Community-Based System for Distributed Data Integration and Sharing
Wenlong Huang, Taoying Liu, and Yi Zhao <

Efficient Use of GUIDs

Christof Lutteroth and Gerald Weber
Tupleware: A Distributed Tuple Space for Cluster Computing

Alistair Kenneth Atkinson

Interconnection Networks
Set-to-Set Disjoint Paths Routing in Dual-Cubes

Keiichi Kaneko and Shietung Peng
Are Uniform Nerworks Scalable? |

Takashi Yokota, Kanemitsu Ootsu, and Takanobu Baba

High Performance Computing

Overheads in Accelerating Molecular Dynamics Simulations with GPUs

Tetsu Narumi, Ryuji Sakamaki, Shun Kameoka, and Kenji Yasuoka
GPU as a General Purpose Computing Resource

Qihang Huang, Zhiyi Huang, Paul Werstein, and Martin Purvis

Feasibility Study of Implementing Multi-Channel Correlation for DSP Applications
on Reconfigurable CPU+FPGA Platform

Maxim Leonov and Vyacheslav V. Kitaev

107

115

121

129

137

143

151

159



907695 3443
Do1 lﬁ.1109/PDCA’1‘.2008.41

12008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies

A New Iterative Elliptic PDE Solver On A Distributed PC Cluster

‘Norhashidah Mohd. Ali and “Ng Kok Fu
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
'shidah@cs.usm.my, *nifi@myvedusoft.com

Abstract

Advancement in parallel computers technology has
greatly influenced the numerical methods used for
solving partial differential equations (pdes). A lot of
attention has been devoted to the development of
‘numerical schemes which are suitable for the parallel
environment. In this work, we investigate the parallel
implementation of the four-point Modified Explicit
Decoupled Group (MEDG) method which was
introduced by Ali and Ng (2007) as a fast solver jor the
two dimensional Poisson pde. The method was shown
to be more superior than all the methods belonging to
the four-points explicit group family namely the
Explicit Group (EG) [8], Explicit Decoupled Group
(EDG) [1] and Modified Explicit Group (MEG) [7].
This paper presents the preliminary results of the
parallel algorithms implemented on a distributed
memory PC cluster. Two parallelizing strategies
comprising of the two-color zebra and the four-color
chessboard orderings in solving a two dimensional
Poisson model problem will be discussed.

1. Introduction

Solving partial differential equations (pdes) are
usually at the heart of most scientific and engineering
applications. The Explicit Decoupled Group (EDG)
scheme was developed by Abdullah (1991) as a more
efficient Poisson solver on rotated grids by using small
fixed size group strategy which was shown to be more
¢conomical computationally than the Explicit Group
(EG) scheme due to Yousif and Evans [3, 5, 8, 9].
Othman and Abdullah {7] subsequently modified the
formylation of the EG method by altering the ordering
of grid points taken in the iterative process to come up
with the modified four-point EG where this method
(MEG) was shown to be more superior in timings than
bOth. t!m original methods. In a recent paper, another
explicit group method was proposed, namely the
Modified Explicit Decoupled Group (MEDG) method

-5/08 $25.00 © 2008 IEEE

47

[4] as an addition to this family of four-point explicit
group methods in solving Poisson equation. The
results obtained indicate that the execution times of
MEDG is only about 10% and 15% of those of EG and
EDG methods respectively, while MEG is about 14%
and 22% of EG and EDG execution times. The MEDG
method outperforms MEG in terms of computing time
and also exhibits better accuracy in all of the cases
observed. The method is explicit in nature so that
parallelism is favorable and thus it is worthwhile to
investigate its implementation on parallel platforms.

In this paper we present a preliminary study of the
newly developed MEDG method on a distributed
memory cluster and compare its parallel performance
with the other existing explicit group methods. The
paper is organized as follows. We present the
formulation of the MEDG method in Section 2
followed by the parallel implementation strategies in
Section 3. We report the experimental results and
concluding remarks in the remaining sections.

2. Modified EDG Method

Consider the following two dimensional Poisson
equation
U, +u, = f(x), (xy)eQ, M
with a Dirichlet boundary condition on a unit square
solution domain [0 < x, y < 1]. Let Q be discretized
uniformly in both x and y directions with a mesh size h
= 1/n, where n is a positive even integer. The solutions
at the (n-1)° internal mesh points (x,y) can be
approximated by various finite difference schemes.
Using the centered difference equation we get the h-
spaced standard five-point difference formula as
follows

4“1,;' Uy "Wy T TR S -n f;, @)
Rotating the x-y axis clockwise 45° and applying the
centered difference formula we get the following
rotated five-point difference formula

G)

_ 2
4ui.j Uyt "YUt Uy T T -2h fr,j

IEEE
computer
® psoaety



Likewise, consider the points at grid size 24 = 2/n and
apply the centered difference equation will result in the
following 2#4-spaced standard five-point difference

formula '
_ 2
4“u ~Uppy —Uigy ~Ujua — Uiy =—4 f; “)

and 2h-spaced rotated five-point difference formula
Qu,, Uy, o2 Ui TUWig "W T —8h’ fi &)
The MEDG method is based on the above four basic
difference formulae.

0123456782910

O =2NWRAROON O
4?:;
L]
SIS HE
T
I XYY ELS aPpevteadat
Py
edns

Figure 1. Groups of four points with 24 spacing

The MEDG method is constructed as follows. We
apply Eq. (5) to groups of four points as shown in
Figure 1 and produce the following (4x4) system of
equations

4 -1 0 0| u, VNP A RS 1

-1 4 0 0¥z | Higea Ty +u:+4g+4"8h2ﬂ+z,/+z
0 0 4 -1 Uisay Upya F gy +ui+4,]+2-8h1.fi+2‘j
0 0 -1 4] v, Upzjra +“i-zj+“.l+2.;§4'8h2fi‘ﬁz
(6)
which can be inverted and rewritten in explicit forms
of a decoupled system of (2x2) equations as follows:

[ u, ] _ ll:4 1] Uppja Flhug g g —8H S
Yo 42 IS{1 4] | sy + gy TUa iy —8h2f,.+2d.+2

)
|iul‘+2.i] - L["‘ 1:| Uy Fpgys T U0 — 8h2ﬁ+2J
Uyjez IS|1 4 g g T Ugy Y Upgjug = Shzf;ﬁz
®

Figure 2 and Figure 3 illustrate the computational
molecules for Eq. (7) and Eq. (8) respectively. Figure
4 shows the discretization points of a unit square
domain with »n=18 and the various types of points
involved. There are (n-1)’=289 internal points that
need to be solved numerically. Of these solution
points, only 32 points (either of type @ or type A) that
will be computed iteratively using the MEDG method.

48

It is obvious that the evaluation of Eq. (7) involveg
only points of type ® and Eq. (8) ) involves only points
of type . ‘

Figure 2. Computational molecule for Eq.(7)

Figure 3. Computational molecule for Eq.(8)

We solve the points of type @ iteratively using Eq. (7)
until convergence is achieved, after which the points of
type A are computed directly once using the 2k-spaced
standard five-point formula of Eq. (4). The remaining
in-between points of type [J are also computed directly
once using the A-spaced rotated five-point difference
formula of Eq. (3), and followed by points of type <
using the h-spaced standard five-point difference
formula of Eq. (2).

We now define the four point MEDG method with
successive over-relaxation (SOR) iterative scheme as
follows.

1. Divide the solution domain into five types of
points as shown in Figure 4 (in this case #n=18).

2. Group all the 2h-spaced @ and A points into four-
point groups.

3. [Iterate the intermediate solution of points @ in
each group using

(k1) ey s (k) 2
Uy _1 [4 l:l Upgpn +Uira 2 T U 1 —8R S
(k1) (k) (k) [£4] 2

Ginjua |  1S[1 41|85 jus F i ) F s jua = 8K fragjua



and implement the relaxation scheme
) (k) » (k+1) (k)
uiu;ﬂ) RE . 4 |y
=, n(k+1) (k)
”"f:"} ) 2 Uirz j42 Upsz,je2 Uiz, js2

4. If the solution converge, go to step 5. Otherwise,

" repeat the iteration step 3.
S Finally evaluate the remaining points in this

- sequence:
a. - points of type A

=‘-i- (u“y Uty H U g U, — AR j:l)
b. . points of type O

: oy =% (um_j,, il oy F Uy g F Uy =20 fu)
¢. points of type <

1 2
Uy =3 (uHJ Fyy Uy U R f,-.,-)

Uyj

SEBEDEDEDEDE DD
IS aoe v 00 s000TANP e
EMJOOOOOOQOQOOQOOOOQ
OO0 P OGS SGO S
.ﬁiﬂg!..OQOQOQOOOGOi
50 60 S0 00 G0 60 S8 6P S ¢
quoioooiooooooof
T e e T I Y

10 []

A Lo L (e e XL g X L X g hy
73600000006....0001
RSP0 SRS
90500 PLGLOL G
NS00S0 COSOCASO O
3J....O..Oi...60001
HOOCOTO VOGO TGS SAY:
19’00..06'..'0..'.'
0

0 1_2 34667889 101112131415161718
® 32 lterative MEDG Foints (2h) & 32 Direct 'Standard’ Points (2h)

0 81 Direct ‘Rotated’ Points (h) ¢ 144 Direct 'Standard' Points (h)
. B 72 Boundary Foints (h)

Figure 4. Types of discretized points in MEDG
method for n=18

3 Parallel Modified EDG Method

We descnbe two ordering strategies used in

pﬂrallellzmg the MEDG method, specifically the 2-
:ﬁ)lo”-zebra and 4-color-chessboard orderings. We use
¢ lower-left and upper-right pair of points for the

iteration process of the MEDG method in conjunction
with Eq. .

49

3.1. Two-color zebra ordering

In this strategy, the 2A-spaced MEDG iterative
points (see Figure 4) of domain  are marked with
two colors A and B resulting in alternating horizontal
panels as shown in Figure 5. Each panel is comprised
of four rows of points. Suppose that n = 34, then there
are (n-2)/4=8 panels all together. Using Eq. (7), these
4-row panels are evenly distributed to the number of
processors available, p, for parallel computation. In our
experiments, we chose n such that (n-2) mod 4p=0.
Thus each processor has its own local domain of u with
equal number of panels which is given by

N, p)==2 )
4p

Note that Eq. (9) is true regardless of the ordering
strategies used. This also holds for the MEG method.
For the EG and EDG methods, each panel is comprised
of two rows of points, making the number of panels
each processor receives to be twice the number given
in Eq. (9).

uoh
32
w0 &
2

. *

» ® @ & L g

2

ul}

1

1sC]|J1
17

Lol

-4 T

01234567 801011121314151617181920212223 425262728200 M1 233

@ Color A Points A Color B Poinis O Boundary Points

Figure 5. 2-color zebra ordering for MEDG
method

All the A colored panels are computed first
simultaneously by all processors (stage 1), followed by
the computation of the B colored panels (stage 2). In
each stage, left-right and bottom-up compute sequence
is employed. Since the computation of A panels
requires the values of points in B panels and vice versa,
communication needs to be carried out to send the



values of local domain boundary points to adjacent
processors. So a single iteration in each processor will
consist of a series of sequential stages: stage 1 where A
panels are computed and checked for local
convergence followed by data transfer of any A panel
boundaries, then stage 2 is performed where B panels
are computed and checked for local convergence
followed by data transfer of any B panel boundaries. A
global convergence test is then performed before the
next iteration. The iteration terminates if the global
convergence is achieved.

Two possible cases may exist, depending on the
number of panels each processor receives, N(n,p) as
listed in Table 1. For example, in an experiment with
n=482 and 5 processors, each processor receives
N=480/20=24 panels which results in an arrangement
with A panel as lower boundary and B panel as upper
boundary for all processors (case N%2=0). In another
ekperiment with the same » but 8 processors, each
processor receives N=480/32=15 panels (case N%%2=1)
which results in an arrangement with A panel as both
lower and upper boundary for processors 1, 3, 5 and 7
(pID%2=1), and a different arrangement with B panel
as both lower and upper boundary for processors 2, 4,
6 and 8 (p/D%2=0). From the communication pattern
shown in Table 1, it is expected that the latter case will
incur more overheads resulting in higher execution
time than the former case.

Table 1. Two possible cases for 2-color zebra
ordering

(a) Case N%2 =10
Computation &
communication tasks in an

Processor Panel iteration loop
Arrangement _ Stage 1 Stage 2
All RB.. Compute A Compute B
AA.. Send A Send B
below, Recv  above, Recy
A above B below
(b) Case N%2=1
Computation &
communication tasks in an
Processor Panel iteration loop
Arrangement  Stage | Stage 2
pID%2=0 BB.. Compute A  Compute B
AR Recv A Send B
BE.. above, Recv  below, Send
A below B above
piD%2=1 AA.. Compute A Compute B
BB... Send A Recv B
AA.. below, Send  above, Recv
A above B below

50

3.2. Four-color chessboard ordering

In this strategy, four colors are used to mark the 2.
spaced MEDG iterative points in the way much like the
color arrangement in a chessboard but with four colors
(Figure 6). So the iteration loop will consist of four
stages of computation and communication. This incur
extensive communication compared to the 2-color
zebra ordering. However, an appropriate combination
of n and p values will reduce some communication
costs.

Table 2. Two possible cases for 4-color chessboard

orderinL

(a) Case N%2=10

Panel Computation & communication tasks in an

Arrange  iteration loop
Processor _ment Stage] Stage2 Stape3  Stage4
All CBCB.. Com Com Com Com
ADAD.. putceA puteB pute C pute D
Send A Send B Send C Send D
below above above below
RecvA RecvB  ReecvC  RecvD
above below below above
(b) Case N%2=1
Panel Computation & communication tasks in an
Arrange  iteration loop
Processor  ment Stagel Stage2 Stage3 Staged
pID%2 CBCB.. Com Com Com Com
=0 ADAD.. puteA puteB pute C pute D
CBCB.. RecvA SendB  SendC  RecvD
below above above below
RecvA SendB  SendC  RecvD
above below below above
PID%2 ADAD.. Com Com Com Com
= CBCB.. puttA puteB puteC  puteD
ADAD.. SendA RecvB Recv C Send D
above below below above
Send A RecvB RecvC  SendD
below above above below

With this ordering, two possible cases may exist
depending on the panel arrangement at the boundaries,
as shown in Table 2. In the first case where
Nn,p)%2=0, each processor incurs exactly one send
and one receive communication in each stage. In the
second case where N(n,p)%2=1, all processors with
pID%2=1 will incur two sends in stage 1 and stage 4,
while processors with p/D%2=0 will incur two sends
in stage 2 and stage 3. Since two sends executed by the
same processors always incur more overheads than one
single send, the second case should be avoided.

This particular sequence of computation in 4-color
chessboard ordering also allow some degree of
overlapping computation with communication for
optimizing parallel performance of the MEDG method.
Note that the computation of C panels in stage 3 does
not require any values of B panels from adjacent



processors, so it can be overlapped with the
communication of B boundaries of stage 2. Similarly,
the computation of A panels in stage 1 can be
overlapped with the communication of D boundaries of
stage 4 from the previous iteration. On the other hand,
overlapping the computations of B or D panels with
communications of A or C panels is not possible since
they require the newly updated values from the
previous stages (see Figure 2). However a full
overlapping of computation-communication is possible
for all stages in the MEG method due to its different
computational moiecule.

A L L L e L LA A
oY mEE *

3

30)

8 F

= Py P

= = i

a

=1

&

o * . *
e g

’
AH-C-OH-OH-D- OO O OO e

50123458678 9010111213141516171871920212223 2425262728 2030 31323334

@ Color A Poinis
 Color C Pols

A Color 8 Points
D Boundary Points

| Color D Points

Figure 6. 4-color chessboard ordering for the
MEDG method

4. Experimental Results and Discussion

The following model problem was used as the test

g r’a! 2
problem; 5?1: +g_;: = 4y%)e?, x,yeQ (10)

h Dirichlet boundary conditions satisfying its exact
dlution . u(x,))=e”, (x,))edQ, 9Q is the
n‘;ﬂdaryof L. We carried out all our experiments on
%«Ofaucluster. of Grid Computing Lab at the School of
; bter Science, Universiti Sains Malaysia. The
e ’»gost has two Pentium IT1 1400MHz CPUs with
Sk :rf ];R:AM and 143.763 GB of local disk. The
o 9zts have each two similar 1400MHz
SAl pCs GB of RAM and 77.739 GB of local
S are connected back to back via Gigabit

4
IR R YR Y P R P R R R

51

Ethernet NICs, with Linux kernel 2.6.9-42.0.2. ELsmp
(x86) and MPI implementation of LAM 7.1.1/MPI 2
C+H/ROMIO. :

The MEDG method as well as the other three
explicit group methods were run with increasing
problem sizes n=482, 962, 1442, 1922 and 2402, using
number of processors p=1, 2, 3,4, 5, 8, 10, 12, and 15.
These numbers of processor were chosen so that a
manageable .range of problem sizes can be used. All
combinations of these # and p values, except =482,
1442, 2402 for p=8, produce the optimal cases
(N%2=0) for the 2-color zebra and 4-color chessboard
orderings. The experimental values of relaxation factor
w, for all the methods were obtained to within +0.0001
by choosing the ones that resulted in the least number
of iterations. In all experiments, we employed /.. norm
with tolerance, £<107 as the convergence criteria.

Table 3 shows some performance comparison
between MEDG and the other explicit group methods
for the 2-color zebra ordering. Only parallel execution
time (in secs) for 15 processors is shown in the table. It
is observed from the results that the MEDG method is
faster than the other methods in terms of execution
speed. It is due to the fact that its number of iterative
points (see Figure 4) is only (m-1)%/8 compared to n’,
(m*+1)/2, and (m-1)/4 for EG, EDG and MEG
methods respectively [4], where m=n-1. MEDG also
exhibits better accuracy in almost all of the cases
observed.

Table 3. MEDG compared with EG, EDG and MEG
methods for 2-color zebra ordering, with paralliel
execution us'Eg 15 processors

Method M(n15) Optw ona _Pa' gup per# MaxEmr  AveEm
n=482
EG 16 1.9809 10.35 168 6.15 698 0.536e3 0.201e-3
EDG 16 1.9700 805 1.03 778 580 0.385e-3 0.146e-3
MEG 8 1.9631 232 055 420 357 0.226e3 0.081e-3
MEDG 8 19584 197 040 493 305 0.236e3 0.090e3
n=962
£6 32 19800 7841 855 017 1347 1466e3 0.565¢-3
EDG 32 19881 6379 597 1088 1123 0.834e3 0.361e-3
MEG 16 1.9808 2083 236 B.82 697 0.571e-3 0.21463
MEDG 16 19784 1740 172 1010 592 0.545e3 0.210e-3
n=1442 4
EG 48 19933 25208 2372 1063 1939 2.11563 0.813e-3
EDG 48 1.9926 22049 1827 12.07 1655 1.382e-3 0.542e-3
MEG 24 19869 6859 685 1002 1025 0.978e3 0.374e-3
MEDG 24 19853 5862 540 1085 873 0.850e3 0.329¢-3
n=1922
EG 64 1.9949 57203 5154 11.10 2534 2.963e3 1.143e-3
EDG 64 19943 49345 4025 12.26 2158 2.373e-3 0.929¢-3
MEG 32 1.9900 15879 1468 10.82 1345 14483 0.557e-3
MEDG 32 19888 13534 1176 1151 1148 1.187e-3 0.46%0
n = 2402
EG 80 1.9950 111444 94.11 1184 3115 3526e-3 1.362e-3
EDG B0 1.9954 96959 7454 13.01 2666 2860e-3 1.120e-3
MEG 40 1.9919 20948 2683 11.16 1664 1.861e-3 0.717e-3
MEDG 40 1.8308 25638 21.72 1180 1416 1.62de-3 0.633e3




Table 4 shows the performance comparison between
MEDG and the other explicit group methods for the 4-
color chessboard ordering. Figures 7 and 8 show the
speedups of the MEDG method compared with the
other explicit group methods for the two parallel
strategies. All figures show that the MEDG method is
able to scale well with the increasing number of
processors. The figures also show that the MEDG
method has better speedups compared to the MEG
method. This is in line with our findings in [6] that
EDG method has higher computation to
. communication ratio compared with EG method in a
fast computing cluster such as the Aurora cluster. Since
MEDG and MEG methods are derived from the EDG
and EG methods respectively, they exhibit similar
performance of the original methods. Note that the
performance of MEDG declines slightly compared
with MEG for the 4-color chessboard ordering due to
its  restricted overlapping computation  with
communication as discussed earlier. In all occasions,
both EDG and EG methods show better speedups over
MEDG and MEG since they have more iterative points
to compute compared to each of their modified
. counterparts which increase = their compute-
communication ratios.

As mentioned earlier, the performance decline in
non-optimal cases can be observed from Figures 7 to 8.
Non-optimal cases of the 2-color zebra and 4-color
chessboard orderings, are also detected at p=8 in
Figure 7 and Figure 8. Note that the performance
declines are more obvious in MEG and MEDG
methods compared to EG and EDG methods due to
their lower computation-communication ratio.

145 | =——Linear Speedup
—a—-EDG
o P
121 o mMDG
M1 —o—MG
10
g9 Zn
- /,
%7 %‘y
6
5
4
34
2- .
123 4567 8 911112131415

No. of Processors

Figure 7. Speedup at »=2402 for 2-color zebra

52

Table 4. MEDG compared with EG, EDG and MEG
methods for 4-color chessboard ordering, with paraje|
execution usinils Processors i

Serial  Par

Method Mn15) Optw® = = SUp ller# MaxEm  Awgy,
n=482 - T
EG 16 19812 1824 185 988 648 046363 0.18ge3
EDG 16 19793  16.36 124 1316 607 0.2668-3 0.107ey
MEG B 19630 410 064 641 335 027763 011363
MEDG 8 19583 328 046 7.08 313 0.168e-3 0.067s3
n=062 - B
EG 32 18903 14296 11.53 1240 1254 107163 0.430e3
EDG 32 19892 13036 946 1377 1172 0.6%4e-3 0281e3
MEG 16 1.9800- 3496 325 1074 657 0.5666-3 0.220e3
MEDG 16 1.9784 2552 2.35 10.86 610 0.53%-3 0.217s3
n = 1442
EG 48 19933 47318 37.79 1252 1855 2.081e-3 0.841p§
EDG 48 1.9926 44444 3242 1311 1T 1.200e-3 0.4864:3'
MEG 24 19670 11424 1042 1087 960 1.008¢-3 0.408e
MEDG 24 19853 8415 8.34 10.09 B93 0.8520-3 0.344e3
n=1922
EG 64 19949 108877 87.19 1249 2435 2.821e-3 1.14283
EDG 64 19943 1014.07 7501 1352 2251 19383 078583
MEG 32 19901 26843 22.37 1200 1265 140463 0.565e3
MEDG 32 1.9888 19627 17.52 11.20 1175 1.149¢3 0.46503
n= 2402 —
EG 80 19959 2103.28 1618 1289 2071 354403 14263’
EDG 80 1.9954 1577.99 1417 13.96 2766 2411e3 0.577ed
MEG 40 19921 51543 4211 1224 1579 1.328e3 053563
MEDG 4D 1.9909 37537 31.37 11.87 1448 15473 0.62603°

It can clearly be seen from the figures that the 4-color
chessboard ordering is slower than the 2-color zebra
ordering. Generally, the 4-color chessboard ordering
would produce the most accurate solution almost all
the time. However, due its slower execution, it could
not be considered as the best candidate for
implementing the algorithm in parallel compared to the
2-color ordering strategy.

:i | Linear Speedup
—8— EDG

13 4 —e—EG

124 p MEDG

11+ —o—MEG

10
- AZD/
&7 4

6 //tr

5

4

3

2-%

1 T T T Sm—p——y

2345678 911112131415
No. of Processors

-

Figure 8. Speedup at n=2402 for 4-color chessboard



g, ConcluSiﬂllS

aper, we present a preliminary report on the
slementation of the new MEDG method
dering strategies running on a PC cluster,

In this D
arallel imp

using two OF ! b .
nd compare them with the existing methods l_aelongmg
?o the four-points explicit group family. The

experimental results indicate that the u_1ethod is the
most superior method in terms of execution speed and
accuracy. It is also able to scale well _vnth the
increasing number of processors and exhibit better
speedups compared to the MEG method. Among the
ywo ordering strategies, the 2-color zebra ordering is
the best strategy for implementing the MEDG method

in parallel. In conclusion, the newly developed MEDG -

method is able to benefit from parallelism when
implemented on the PC cluster.

Acknowledgement

The authors acknowledge the Fundamental Research
Grant (203/PMATHS/671052) for providing the funds
to cover for the expenses incurred in attending the
PDCAT 2008 conference.

References

11 A. R. Abdullah, The Four Point Explicit Decoupled
Group (EDG) Method : A Fast Poisson Solver,
International Journal of Comp. Math., Vol. 38, 1991,
pp. 61-70.

[2] A.R. Abdullah and N. M. Ali, The comparative study

of parallel strategies for the solution of elliptic PDE’s,

l;’;rfééel Algorithms and Applications. Vol 10, 1996, pp.

53

E)

[4]

(1

(6]

{7

(8]

(9]

N. H. M. Ali, A. R. Abdullah and J. L. Kok, A
comparative study of explicit group iterative solvers on
a cluster of workstations, Parallel Algorithms and
Applications. Vol 19 (4), 2004, pp. 237-255.

N. H. M. Ali and X F. Ng, Modified explicit decoupled
group method in the solution of 2-D elliptic PDEs.
Proceedings of the 12" WSEAS International
Conference on Applied Mathematics, Cairo, Egypt, 29-
31 December 2007, pp. 162-167.

D. J. Evans and W, S. Yousif, The Implementation of
The Explicit Block Iterative Methods On the Balance
8000 Parallel Computer, Paralle! Computing, Vol 16,
1990, pp. 81-97.

K F. Ng and N. H. M. Ali, Performance analysis of
explicit group parallel algorithms for distributed
memory multicomputer, Paralle! Computing (Special
Issue: PMAA '06), Vol. 34 (6-8), 2008, pp. 427-440.

M. Othman and A. R. Abdullah, An Efficient Four
Points Modified Explicit Group Poisson Solver,
International Journal of Computer Mathematics, Vol.
76, 2000, pp. 203-217.

W. S. Yousif and D. J. Evans, Explicit Group Over-
relaxation Methods for Solving Elliptic Partial
Differential Equations, Mathematics and Computers in
Simulation, Vol. 28, 1986, pp. 453-466.

W. S. Yousif and D, J. Evans, Explicit de-coupled group
iterative methods and their parallel implementation,
Parallel Algorithms and Applications. Vol 7, 1995, pp.
53.71.



