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ABSTRACT

We would like to. show in this paper that there exist a whole range of screening solutions of
multimonopole by unit charge antimonopoles in the SU(2) Yang-Mills-Higgs theory. These screening
solutions are exact multimonopole-antimonopoles configurations, wh - the positively charged
‘multimonopole is screened by unit charged antimonopoles located or 2Q 4 é“ ~ith the
multimonopole positioned at- the center of the spherical shell. These solunvus o... 4
Bogomol’nyi equation but possess infinite energy. Hence they are a different type of BPS solutions. .
these screening solutions possess rotational symmetry about the z-axis.

INTRODUCTION

The SU(2) Yang-Mills-Higgs (YMH) theory, with the Higgs field in the adjoint representation,
possesses both the magnetic monopole and multimonopole solutions [1, 2, 3]. The simplest solution
with unit magnetic charge is the spherically symmetric ’t Hooft-Polyakov monopole [1].
Multimonopole solutions cannot be spherically symmetric and possess at most axial symmetry [3]. In
particular, there are no solutions of magnetic charge greater than one with radial symmetry. Analytic
monopole and multimonopole solutions [1, 2, 3] have been shown to exist in the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit with vanishing Higgs potential. These solutions satisfy the first order
Bogomol’nyi equations and they have minimal energies. However, when the Higgs potential is finite,
there exist only numerical monopole and multimonopole solutions [3].

Recently, axially symmetric monopoles-antimonopoles chain solutions which do not satisfy
the Bogomol’nyi condition were constructed numerically. These non-Bogomol’nyi solutions exist
~both in the limit of a vanishing Higgs potential as well as in the presence of a finite Higgs potential.
BPS axially symmetric vortex rings solutions have also been constructed numerically [4].

We would like to show in this paper there exist a whole range screening solutions by unit
charge antimonopoles in the SU(2) YMH model. These screening solutions were actually first
reported in ref. [5] and they were labeled as the A1 and the B1 solutions. The screening solutions are
exact multimonopole-antimonopoles configurations where the positively charged multimonopole is
screened by unit charged antimonopoles located on a spherical shell, with the multimonopole
positioned at the center of the shell. The SU(2) YMH model in our work is of vanishing Higgs
potential. The solutions are solved from the second order Euler-Lagrange equations and the first order

Bogomol'nyi equations B; £ D,®“ =0 with the positive sign. The screening solutions satisfy the first

order Bogomol'nyi equation but possess infinite energy. Hence they are a different type of BPS
solutions.
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THE SU(2) YANG-MILLS-HIGGS THEORY

The SU(2) YMH model consist of the Yang-Mills vector fields A; and the Higgé scalar field ©° m

3+1 dimensions. The index ais the SU(2) internal space index. For a given a, ®° is a scalar whereas
A, 18 a vector under Lorentz transformation. The SU(2) Yang-Mills-Higgs LagTanglan in 3+1

dimensions is
; E - 2 2
L=_%F;VFW%Dwapﬂ@a_?[@a@a_f_] , ®

‘where the constant x is the mass of the Higgs field, and the constant A is the strength of the Higgs

potential. The vacuum expectation value of the Higgs field is then ,u/ JA. The Lagrangian from Eq.

(1) is invariant under the set of independent SU(2) gauge transformations at each space- -time pomt
The covariant derivative of the Higgs field is

D,®°=0,0% +ge™ 4 cbc (@)
where A4, is the gauge potential and the gauge field strength tensor is o
Fo =0,40-0,4% +ge™ A" 4C. (3)

The gauge field coupling constant g can be scaled away, hence it is set to one here without any loss of
generality. The metric used is g,, = (-+++). The SU(2) group indices a, b, ¢ run from 1 to 3

whereas the spatial indices g,v,a run from 0 to 3 in Minkowski space. In this paper, we consider
only static solutions with 4¢ = 0. The spatial indices i, j and  then run from 1 to 3.

The equations of motion obtained from Eq (1) are :
D“F;, =0 F,, +s"”‘A#F;V =£®’D,®°, DD, =-10" (cb”q‘,:" _f;—’). | 4
~ The electromagnetic field tensor introduced by ’t Hooft [1] is ‘
F,=0F - 54D &'D,&°=0,4,-0,4, - £%d°0 §'0,8°, (5)
where 4, =®° 47, the unit vector ®° = /|| and the Higgs field magnitude |®| = V@ @ . The
Abelian electric field is E; = F;,, whereas the Abelian magnetic field is defined as B, =—7 &, £, . The
topological ~magnetic current k, is defined to be k,= e, 0 dordtorde,

H .uvpa abe
and the correspondmg conserved topologlcal magnetic charge is

= jd3xko je,jkgabca (&0,8%0,8°)d’
=_<§d2 (gukgabfqnaa 3 CD”)——Cfdzq ~ (6)
THE SCREENING SOLUTIONS

We used the ansatz of ref. [5] with the gauge fields and the nggs field given by
a_ .1_ ] —— a a ~g
A,,~rR(9)(¢ 3, y/(r)( 96, -6°9, )+ G(6.9)(#°6,-6,),
Q° =D +0,0° + D97, ()
where @, =lt//(r), o, =1R(9), o, =-1-G(9,¢), and the spherical coordinate orthonormal unit
r ¥ r

vectors are



'=sin@cos g6 +sin Fsin §J; +cos by,
6° = cos 6 cos ¢6° + cos sin g67 —sin 457 ,
¢° =—sin g5, +cos45; . . )

The gauge fixing condition that we used here is the radiation or Coulomb gauge, 0’4’ =0,
4; =0. From the ansatz, Eq. (7), 4, = (i)"AZ =0. Hence the Abelian electric field E, is zero and the
Abelian magnetic field B, is independent of the gauge field 4;. To calculate the Abelian magnetic

field B,, we rewrite the Higgs field of Eq. (7) from the sphencal coordinate system- to the Cartesian
coordinate system, o
O =@ + @29" + @0 = D,5° + D57 + D57, ‘ ®
where ‘ ‘ ‘
' - @, =@, sinfcos g+ D, cosf cos p— D, sin¢=|®|cosasinﬂ
o, = =@, sinfsing + D, cosIsing + D, cos¢ = chlcosacos _
®, = @, cosf+®,sind =|®|sine . . (10)

‘The Higgs field unit vector is then simplified to
®° = cosasin B 67 +cosa cos B 57 +sina 57 . (1D
The Abelian maghetic field is derived from Eqg. (5) and it is found to be
. B 1 {aﬁ Osina G asma}r N 1 {%88]’110! _%6sina}é
r?sin (9) op 068 08 0O |' rsin@|Or Op Op or '

+l a_ﬁasma_gﬁ_asma &, (12)
r 08 or or 06 .
where
sing wcose Rsme, and f=y—4, y=tan_1(wsm9+R0059J. (13)
Jv +R*+G G
The Abelian field magnetic flux is ) =
| Q=dzM = [[B(r*sin0d6)rdg (14)

and the magnetic charge enclosed by the sphere centered at » =0 and of fixed radius r,, is found to be

Mﬁ=27;.[]2zf{a_ﬂ__6__s_1£g_‘a_éasma} 644 (15)‘

r=q

By substituting the ansatz, Eq. (7) into the equations of motion (4) as well as the first order
Bogomol’nyi equations B’ + D,@" =0 with the positive sign, these equations can be simplified to just
four ordmary differential equations of first order:

ry' -yt +y=-p, , (16)
R+Rcotf-R*=p—b*csc? 6, | 17)
G+Geotf=0, G’cscd-G*=b"csc?6. : (18).

where p and bare afbitrary constants, prime means the partial derivative &/dr, dot means the partial
derivative 8/, superscript ¢ means the partial derivative 8/d¢ .

Eq. (16) is exactly solvable for all real values of p and the integration constant can be scaled
away by letting r — r/c, where c is the arbitrary integration constant. In order to have solutions of
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w(r) with (2m+1) powers of r, we write p=m(m+1). Eqgs. (18) are also exactly solvable and a

general physical solution is G(G, ¢) =bcscHtan bg, where b is restricted to take half integer values
for G to be a single value function. Therefore we can write 4 =m£s where s is a natural number and
m-can take half-integer values. For all the solutions presented here, b is non-zero. When b=0, we
have the axially symmetric solutions which is reported in a separate' work [6]. Screening solutions
arise when we consider b =m-s. Hence the solutions for the profile functions y (r) and G(6,4) are

m+1—mri™!

1+ r2m+l-
§=0,1,2,3..... For y(r) to have integer powers of r and G(#,4) to be a single value function the

w(r)= , G(8,¢)=(m~s)cscOtan(m—s)g, .19

value of m is restricted to a half integer, where m > s+%. Eq. (19) is a Riccati equation and R(#) can

be exactly solved for different combinations.of p and b. The solution for R(@) when b=m-s and .

p=m(m+1) is given by
- - ™ (cos8)

R(6)=(m+1)cotd—(s+1 csce—L,
( ) ( . ) 7 ( ) P”r'n—.\' (cose)

20)

where 5=0,1,2,3..., m=s+i,s+Ls+14,5+24,.... and P (cos) is the associated Legendre
function of the first kind of degree m and order m—s.

The solutions (19) and (20) are the screening solutions of a multimonopole by antimonopoles
which we label as the 1, series. The boundaries conditions of the 1, series of solutions are:

w(?)Hm——>—m, w(r) —(m+1); G(6,0)=G(6,7)=0;
R(0)sin6|,_ ——(m—s), R(6)sing| _—>(m-s). 1)

We further subdivide the 1, solutions into the B, configurations when s is zero or even and the Al,

r-0

G—a

'conﬁ'gurations when s is odd. It is clear that the B1 and A1l solutions reported in ref. [5] are the cases
with s =0 and s =1 respectively. The difference between the Al and Bl solutions is in the profile

function, R(8). For the Al, solutions, R(8)cosd)| pors =1 whereas for the BI, solutions, R(%)=0.

Besides in the form of associated Legendre function as in Eq. (20), the profile function for R (9) can
also be written in trigonometric function, as in Table 1.

The energy of the solutions here is not finite due to the singularity of the solutions at the
origin, # = 0. Unlike the usual BPS solutions, the vacuum expectation value for the Higgs field in our
solutions tends to zero at large ». Hence the energy of our solutions is not minimally bounded from
below. The net topological charge of the system is given by the integration of the radial component of
the Abelian magnetic field over the sphere at infinity,

M, = 8_111:4 d’o, (a,jke"”‘é"ajci)bak(i)“) (22)

Hence the monopoles and antimonopoles of our solutions here can be associated with the number of
point zeros of @ enclosed by the sphere at infinity. The positions of the monopoles and
antimonopoles do correspond to the point zeros of the Higgs field but the multimonopole is always
located at the origin of the coordinate axes where the Higgs field is singular. The definition for the
_ magnetic charge as given by Eq. (6) and Eq. (22) is not affected by the fact that the magnitude of the

Higgs field, ]CD| vanishes at large r. It only depends on the direction of the unit vector of the Higgs

field, &, in internal space.



Table 1: The profile functions R(6), G(6,4) with descending values of b for the series of 1

screening solutions.

1, series b Function of R(6) Function of G (6, $)
Bl, " m ' -mcoté _ mcsc 6 tan mg
Al, m-1 [ tane—(rnﬁz—ii)cotb o (m-1)cscHtan(m—1)¢
Bl, .m—2 ' coifs 4(m—1)‘cot9. (m—2)cschtan(m—2)4
2(m—1)cos’ #—sin> @
Al m—3 4(m-2)cot@ (m—3)cscOtan(m—3)¢

tan @ —(m—1)cot§+

2(m—2)coszt9—35in2€

From Eq. (15), the magnetic charge of the 1. series of solutions at infinity, M_ can be exactly
calculated using Maple 9, whereas the magnetic charge at the origin, M, can be obtained by the use
of the approximation methods in the Maple 9 software. For the screening 1, series, M, is the
magnetic charge of the multimonopole at 7 =0 whereas M., is the net magnetic charge of the system.
We also denote M, as the net charge of the screening antimonopoles. '

A detailed description of the first two members of the 1, series, the B, and Al, solutions, is

found in ref. [5]. However, in ref. [5], we only consider the solutions for integer values of m whereas
here we have noticed that m can take half-integer values. It turns out that for the Bl, solution, the

multimonopole can possess odd values of magnetic charge, instead of just even values of magnetic
charge as in ref. [5]. Therefore, when m=1, the Bl, configuration is a pair of monopole and

ént’imonopole. The monopole is at the origin, whereas the antimonopole is at the point (\/5 ,0,0), as

shown in Fig. 1(a). Subsequently when m =1, we have the configuration of a 2-monopole, surrounded
by two antimonopoles, Fig. 1(b).

@ ®)

Figure 1. Magnetic field plot of the B, solution when (a) m =7 and (b) m=1.

Similarly we consider the cases of half-integer values of m for the Al, solution. The first
member of the Al solution when m=1% has M,=+21 and M, =-2, hence there is a
multimonopole of charge +21 at » =0 and partially screened by two antimonopoles located at the x-z
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plane, as shown in Fig. 2(a). The next member when m =2 has M; =4 and M, =—4. Hence the net
magnetic charge is zero and the configuration is a 4-monopole at r=0, surrounded by four
antimonopoles, Fig. 2(b). As m increases in steps of one-half, M, increases by 11 monopole charge
and the screening antimonopoles increases by two. Therefore the multimonopole in the Al, solution
can take half-integer values of monopole charge when m is a half-odd integer:
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Figure 2: Magnetic field plot of the All/ solution when (@) m=1% and (b) m=2.

The third member of the 1, series is the Bl, solution with s =2. The value for bis m—2 and m
increases in steps of half, starting from 24 . The first member when m =24 has M, =+4, M, =-3,
hence there is a 4-monopole at the origin, partially screened by three antimonopoles at constant r
along the x-z plane, Fig. 3(a). When m=3, M, =+6 and M, =-6, hence there is a 6-monopole at
the origin, surrounded by six antimonopoles along the x-z plane, Fig. 3(b). By induction, the values of
M, and M, is given by (4m—6) and (6-2m) respectively. Hence, we conclude that the BI,
solution consists of a (4m—6)-monopole at the origin, surrounded by 6(m~2) antimonopoles at

finite and constant 7. As m increases in steps of one-half, A, increases by two monopole charge and
the screening antimonopoles increases by three, Table 2,
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Figure 3: Magnetic field plot of the Bl, solution when (a) m = 2% and (b) m=3.



‘Table 2: The magnetic charge at the origin, A, the net charge of antimonopoles, A, and the
magnetic charge at infinity, M_, of the Bl, solution for different values of m.

Values of m M, ’ M, M,
21 e T3 1
3 ¥6 % 0
31 8 T 9 1
,;1 4m-(3x2) | —6(m-2) —2(m-3)

The subsequent 1, series has M, =(s+2)m—(s+1)s, M, =s(s+l-m) and
M, =-2(s+1)(m—-s), Table 3. The Al series possesses half-integer multimonopole charge when the
parameter m is a half-odd-integer, whereas the Bl screening series possesses only integer values of
multimonopole charge, Table 3. In the screening solutions, the positively charged multimonopole is
screened by unit charge antimonopoles located on a spherical shell of radius r = ZM@ , with the

multimonopole positionéd at the center of the shell. However, one can also describe the position of the
screening antimonopoles as located on the horizontal circles of the spherical shell. In particular, the
antimonopoles in the Bl, solution are located on just one horizontal circle, along the x-y plane. For the

Al, solution, the antimonopoles are located on two horizontal circles of the spherical shells, whereas
the antimonopoles in the Bl, solution are located on three horizontal circles and so on. Hence the
number of horizontal circles increases as s +1.

Table 3: The 1, series of screening solutions. Here b =m—s where se { 0,1,2,3,...} . Each series starts -
with m =s+% and m increases in steps of one-half. When s is odd, we have the Al, series and when s
is zero or even we have the Bl series.

1, series s M, M; M, No. of horizontal
circles
Bl, 0 2m | 0 —2m 1
Al 1 3m~(2x1) 1(2~-m) —4(m-1) 2
Bl, 2 4m-(3x2) 2(3-m) —6(m-2) 3
Al, 3 5m-(4x3) - 3(4~-m) -8(m-3) 4
1, s | (s+2)m—(s+1)s | s(s+l-m) | 2(s+1)(m—s) s+1




CONCLUSIONS AND COMMENTS

We have shown the existence of screening solutions, the 1 series, where s is a natural number and
m2s+y, increases in steps of one-half. The 1 series can further be subdivided into the Al
solutions when s is odd, and the BI solutions when s is zero or even. All the members of the

screening solutions have a multimonopole at » =0 and surrounded by antimonopoles located on a
- spherical shell. However, there is a difference between the Al -and Bl, solutions. The magnetic

charge of the multimonopole at »=0 of the Al  solutions can possess half-integer values of

monopole charge when m is a half-odd integer, whereas the magnetic charge of the multimonopole of
the Bl, solutions are always of integer values. The screening antimonopoles possess magnetic charge

-1 and there are no screening antimonopoles with fractional magnetic charge.

We would also like to note that there exist another series of solutions when the constants of Eq.
(17) are p=m(m+1) and b=m+s, where se{1,2,3,..} . In these series, there exist only monopoles

or multimonopole with no antimonopoles located at finite  and we labeled them as the 2, series. The

first and second members of the 2_ series were also reported in ref. [5] and they are the A2 and B2

solutions. The A2 solution consists of only a multimonopole at the origin whereas the B2 solution
consists of finitely separated monopoles located on a circle along the horizontal plane. The 2, series
are reported in ref. [7].

Besides the 1, series and the 2, series, the ansatz (7) actually supports more static monopoles

solutions. In particular, there always exists an anti-configuration for every monopoles solution of the
ansatz, where the magnetic charge of the “poles” and the direction of the magnetic field changed sign

[8).
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