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Abstract

The SU(2) Yang-Mills-Higgs theory supports theexi,stence ofmanopoles,
antimanopoles, and vortex rings. In this paper, we would like to present
new exact static ~ntimonopole-monopole-antimonopole(A-M-A) configura­
tions. The net magnetic charge of these configurations is always negative
one, whilst the net magnetic charge at the origin is always positive one far
all positive integer values of the solution parameter m. However, when m
increases beyond one, vortex. rings appear coexisting with these A-M-A con­
figurations. The number of vortex rings increases proportionally with the
value of m. They are magnetically neutral and are located in space where
the Higgs field vanishes. We also show that a single point singularity in the
Higgs field need not corresponds to a structureless I-monopole at the ori­
gin but to a zero size monopole-antimonapole-monopole (MAM) structure.

the first order Bogomol'nyi equation but possess infinite energy due to a
point singularity at the origin of the coordinate axes. They are all axially
symmetrical about the z-axis.

1 Introduction

The SU(2) Yang-Mills-Higgs (YMH) field theory, with the Higgs field in the adjoint
representation possesses magnetic monopole, multimonopole, antimonopoles, and
vortex rings solutions [1]-[8). The only spherically symmetric monopole solution
is t.h~. unit. ma'l.!nf?tic charge monopole. The 't H0oft.-pQlyakov monopole solution
'vvi~h nor.. zero Higg6 r.nacs ana HiggS sell-int,c;racitioll is DUllie.ticdlly, splle.ncally
symmetrical [1]-[2]. Multimonopole solutions possess at most axial symmetry [3].
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Figure 4: A point plot of the net magnetic charges M at large r versus the magnetic
charges Mo at r = 0 for the series of configurations and anti-configurations of AI,
A2, BI, B2, C and AS.
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The model with non vanishing Higgs vacuum expectation value but vanishing
Higgs potential possesses exact monopole and multimonopole solutions which.. can
be obtained by solving the first order Bogomol'nyi equations [11]. These solutions
satisfying the Bogomol'nyi-Prasad-Sommerfield (BPS) limit possess minimal en­
ergies. Exact monopole and multimonopoles solutions exist in the BPS limit [2] ­
[3] whilst outside the BPS limit, when the Higgs field potential is non vanishing
only numerical solutions are known. Asymmetric multimonopole solutions with
no rotational symmetry are numerical solutions even in the BPS limit [4].

At present, the different exact configurations of monopoles found are the BPS
IDultimonopole solutions of magnetic charges M greater than unity with all the
magnetic charges superimposed into a single point in space [3]. These superim­
posed multimonopole solutions possess axial and mirror symmetries. Following
these works, finitely separated I-monopoles were also constructed [4]-[5].

Numerical axially symmetric non-Bogomol'nyi monopole-antimonopole chain
solutions were also found to exist both in the limit of a vanishing Higgs potential
as well as in the presence of a finite Higgs potential. Recently, numerical BPS .
axially symmetric vortex. rings solutions have also been reported [6].

We have reported on the existence of a different type of BPS static monopole­
antimonopole solution in Ref. [7]. This solution which is exact and axially sym­
metric, represents two separate antimonopoles located at equal distances along
the z-axis from a I-monopole which is located at the origin. We have also shown
that the extended ansatz of Ref. [7] possesses more multimonopole-antimonopole
configurations, together with their anti-configurations [8]. These configurations
possess either radial, axial, or mirror symmetries about the z-axis and they repre­
sent different combinations of monopoles, multimonopole, and antimonopoles.

In general, configurations of the YMH field theory with a unit magnetic charge
are spherically symmetric [1], [2], whilst multimonopole configurations with mag­
netic charges greater than unity possess at most axial symmetry [3]. However we
have emphasized in a recent work [9J that unit magnetic charge configurations
are not necessarily spherically symmetric. By employing the ansatz of Ref. [7] we
have found exact unit magnetic charge solution that does. not even possess axial
symmetry but only mirror symmetry about a vertical plane through the z-axis.
However the reverse is true and it has been shown that multimonopole solutions

. cannot possess spherical symmetry [10J. We would also like to mention that within
the ansatz of Ref. (7), half-monopole solutions have also been reported [9).

In this paper we would like to present new static axially symmetric -antimonopole- .
monopole-antimonopole (A-M-A) configurations. of the SU(2) YMH theory with
the Higgs field in the adjoint representation. Here the Higgs field vanishes either at
points corresponding to antimonopoles or at rings corresponding to vortex loops.
The net magnetic charge of these configurations is always negative one, whilst the

.net magnetic charge at the origin, r = 0, is always positive one for all positive
integer values of the solution parameter m. However, when m increases· beyond
one, vortex rings appear coexisting with these A-M-A configurations. The number
of vortex rings in the configuration is equal to (m - 1) where m 2:: 1. They. are
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(1)

magnetically neutral and are located horizontally in space where the Higgs field is
zero. Hence this family of solutions all lies in the topologically non trival sector

• ~, J ." J • •

wltn tOpOgICa! cnarge negatIve one.
The two antimonopoles of the solutions are located at the two zeros of the Higgs

field along the z-axis, whilst the I-monopole is located at a point singularity of the
Higgs field at the origin.. We also show that this. single point singularity in the
Higgs field need not corresponds to a structureless I-monopole at the origin but
to a zero size monopole-antimonopole-monopole (MAM) structure when m = 1.
These exact solutions are a different kind of BPS solutions as they satisfy the first
order Bogomol'nyi equation but possess infinite energy due to a point singularity
at the origin of the coordinate axes.

We briefly review the SU(2) Yang-Mills~Higgs field theory and discussed the
boundary conditions of these sol:utions in the next section. We present the solutions
and discuss the t' Hooft Abelian_magnetic charges and fields in section 3.. _We end
with some comments in section 4.

2 The SU(2) Yang-Mills-Higgs Theory

The SU(2) group admits the triplet Yang-Mills gauge fields potential A~ which
when coupled to a scalar Higgs triplets field epa in 3+1 dimensions gives the 8U(2)
YMH theory [12]. The index a is the SU(2) internal space index and for a given·
a, q..a is a scalar whereas A~ is a vector under Lorentz transformation. The SU(2)
YMH Lagrangian is given by

£, = _!Fa patLv + ! DJLcpaD cpa _ ~ .A (cpa<pa _ /Jt2)2
4j.tv 2 J.L 4 A'

where the Higgs field mass, /1>, and the strength of the Higgs potential, A, are
constants. The vacuum expectation value of the Higgs field is then jJJ V5.... The
Lagrangian (1) is gauge invariant under the set of independent local SU(2) trans­
formations at each space-time point. The covariant derivative of the Higgs field
and the gauge field strength tensor are given respectively by

D <I>a _ a <I>a + EabcAb<pC
JL JL tL '
F a _ [) Aa _ [) Aa + .cabcAbAc

J.tv tL v v tL '- J.L v·

(2)

(3)

Since the gauge field coupling constant g can be scaled away, we can set 9 to
one without any loss of generality. The metric used is 9J.tv = (- + ++) .. The
SU(2) internal· group indices a, b,c run from 1 to 3 and the spatial indices are
fl, lJ, Q = 0,1,2, and 3 in Minkowski space.

The equations of motion that follow from the Lagrangian (1) are

DJ.L Fa _ ap.Fa + EabcAbfJ,FC = Eabccpb D CPC
p.v p.v J.Lv v ,

2
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The tensor to be identified with the Abelian electromagnetic field, as proposed by
't Hooft [1], [13] is

FJtv - ~aF:
II

- Eabc~aDp,~bDvcf!c

- 81J,Av - 8 v Ap, - Eabc<i>a8j.i<i>b8v<I>c, (5)

where AJt = 4a A~, <i>a = <I>a /I~\' 1<1>\ = V<t>a<I>a. Hence the Abelian electric field
is Ei = FOi ' and the Abelian magnetic field is Bi = -~EijkFjk' where the indices,
i, j, k = 1,2, 3. The topological magnetic current, which is also the topological
current density of the system is [13]

k 1 . av;"a 8P;"b ·80";"c
j.i = 81r Ep,vpO" Eabc '¥ '¥ '¥ •

Therefore the corresponding, conserved topological magnetic charge is

M - f d3x 1f{] == 8~ Jfijk fabc8. (\l>a8j \l>b8k\l>c) d3x

- 8~ f d2Ui (fijkfabc\l>aaj\l>bak\l>c)

1 f 2- 41T d O'i Bi . (7)

Our work is restricted to the static case where Ag = 0 with massless Higgs
field and vanishing self-interaction; The magnitude of the Higgs field vanishes
as 1/r at large r. However, this does not affect the Abelian magnetic field of
the solutions as this magnetic field depends only on the unit vector of the Higgs
field. It is in this limit that the solutions are solved using both the second .order
Euler-Lagrange equations and the Bogomol'nyi equations, Bf ± DiifJa = O. The ±
sign corresponds .to monopoles and antimonopoles respectively for the usual BPS
solutions [13]. In our case, the A-M-A configuration is solved with the + sign and
its anti-configuration, that is, the M-A-M configuration is solved with the - sign
[8] .

3 Monopole, Antimonopoles, and Vortex Rings

The static gauge fields and Higgs field which will lead to the axially symmetric
vortex rings solutions are given respectively by [7]

A~ ~1/>(r) ({jaJ,1" - J,aOI") + ~R(e) Wrl" - F¢I")'

(8)

where <1>1 = ~'l/J(r), <1>2 = ~R(B). The spherical coordinate orthonormal unit
vectors, fa, fJa, and ¢a are defined by .

- sin B cos ¢ 8f +sin e sin ¢ 6~ + cos lh)~,

ea
_ cos (} cos ¢ 8r + cos e sin ¢ 8~ - sin e6~,

¢a _ _ sin ¢ 01+ cos ¢ o~,
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where r = VXi'Xi' () = cOS-1(X3/r), and ¢ = tan-1(x2/xd. The gauge field
strength tensor and the covariant derivative of the Higgs field are given respectively
by .

F;v - :2 fa {R+ R eot e+ 21/1 _1/12} (¢/.9v - ¢vO,,)
1 '" ." A"'''+ 2 0a {R(1 - ¢)} (¢JJev - ¢vep,)
r

+ :2 {faR(I -1jJ) + oa(r1jJ' + Reote - If)} (f,,¢v - fv¢l')

+ 1
2

(pa {-(r1j;' + R) } (Tp,Bv - TvBp.), .(10)
r .

DI'~a - :2 {fa(r1/1' -1/1 - R2
) -8"R(I - 1/J)} 1'1'

+ :2 {_faR(I - 1/J)+ 9"(R +1/1_1/12)} 01'

+ :2 {¢a(1/1 _1/12 + Reot e - R2
)} ¢I'" (11)

Here prime means a/aT and dot means a/Be. The gauge fixing condition that we
used here is the radiation or Coulomb gauge, aiAi = 0, Ao~ o.

The ansatz (8) is substituted into the equations of motion (4) as well as the
Bogomol'nyi equations with the positive sign and the resulting equations of motion
are just two first order differential equations,

r'l/J' + 'l/J. - 'ljJ2 = -p, (12)

R+ ReotO - R2 =p, (13)

where p IS' an arbitary constant. Eq. (12) is exactly solvable for all real values
of p and the integration constant can be scaled away by letting r ~ r / c, where
c is the arbitrary integration constant. In order to obtain solutions of 'ljJ with
(2m + 1) powers of r we can write p = m(m + 1) where m is real. By doing.so,
the solutions of the Riccati equation (13) can be exactly solved in terms of the
Legendre functions of the first and second kind. For the solutions of Eq.(13) to
be regular along the z-axis, we require R(B) to vanish' when B = 0 and B = 7r. To
achieve these boundary conditions, the integration constant of Eq.(13) is set to
zero and m is restricted to take integer values. The solutions for 'l/J and R are then.
given respectively by

(m + 1) - mr2m+1

'ljJ(r) - 1+ r 2m+1

{
Pm+1 ( cos B) }

R(fJ) - (m + 1) cot e- Pm (cos B) csc() ,
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where Pm is the Legendre polynomial of degree m, and m = 0, 1,2,3, . . .. Hence
the boundary conditions of the solutions, Eq.(14), are 'lj;(O) = m + 1, 'lj;(oo) =
-m, R(O) = R(7f) = O.

In the BPS limit, the energy can be written in the form

E - ±f 8;(Br<li") d3x + f ~(Bf ± D;<li")2 rf'x

- ± f 8;(Bf<li") rf'x = 41rM:Ix' (15)

(16)

where M is the "topological charge" when the vacuum expectation value of the
Higgs field" -:7>. is non zero coupled with some non-trivial topological structure of
the fields at large r. The energy of the systems here is however not finite for all
values of m at the origin r = 0 due to the presence of a singularity there. Also
the vacuum expectation values of our solutions tend to zero at large r. Hence the
energy of our solutions is not bounded from below by 4rrM 1';..

However the topological charge is also related to another gauge invariant quan­
-tity bf the system. as given by Eq.(7) which corresponds to the zeros of the Higgs
field, .

M ,1 f d2 ( abc.i.~8 .i.ba .i.e) I
00 = -. O"i Eijk E ':i' j'1l k'1l •&. ~oo

The monopoles and antimonopoles of our solutions here can then be associated
with the number of zeros of <1>a enclosed by the sphere at infinity. The positions
of the antimonopole do correspond to the zeros of the Higgs field in the A-M-A
solutions. However the I-monopole is not located at the zeros of the Higgs field
but at the origin of the coordinate. axes where the Higgs field is singular. The
reverse is true of the case of its anti-configuration.

From the ansatz (8), AJ-L = <i>aA~ = O. Hence from Eq.(5), the Abelian electric
field is zero and the Abelian magnetic field is independent of the gauge fields A~.

Toca1culate for the Abelian magnetic field B i , we rewrite the Higgs field of Eq. (8)
from the spherical to the Cartesian coordinate system, [6]-[8]

q,a _ <1>1 fa + cI>2 {ja + <1>3 Jya

. etl 8aI + ~2 8a2 + cI>3 8a3 (17)

where q,1 -

eJ?2 -
q,3 -

sin ecos ¢ <PI + cos () cos ¢ <1>2 - sin ¢ <1>3 = l<p1 cos a sin,8

sin esin ¢ <PI + cos esin ¢ cI>2 + cos ¢ cI>3 = I<PIcos a cos f3

cos ()<PI - sin B <1>2 = 14l] sin a. (18)

The Higgs unit vector is then simplified to

where, sina -

cos a sin f3 oal + cos a cos f3 oa2 + sin a 8a3
,

'l/J cos () - R sin () 1r

v'l/J 2 + R2 {3 = 2 - ~,
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(22)

(23)

, A

and the Abelian magnetic field is found to reduce to only the Ti and (Ji components,

B
i
~ 1 f8sinaBf3,_ 8sina8fJt rr,

r2 sin (J l 8e 8¢ 8¢ ae JIt

+ -.....-1_ {BSina 8{3 _ 8sina 8(3} e.
rsinO a¢ ar ar 8¢ t

~ '{ asio a a(3 _ asin ex a{3} ¢.
+ r ar 8e ae ar t,

_ _ 1 { 8 sin ex} f. + _1_ {a sin a } {j. , (20)
r2 sin e 80 , t r sin B 8r t·

Defining the Abelian field magnetic flux as

n = 471"M = f rfa;B; = JB;(r2 sin OdO)f; d4>, (21)

the magnetic _charge enclosed by the sphere at infinity, Moo, is calculated to be
negative one,

Moo _ ~ {2.7l" {7l" (8sina8(3 _ aSin a8fJ )dBd¢
47r Jo Jo Be 8¢ 8¢ 80 r~oo

1 11l'- - -sina " =-1.
2 O,r-+oo '

From Eq. (22), we can conclude that the total magnetic charge M of these axially
symmetric solutions does not depend on the degree of the Legendre polynomial
m. Hence for all the solutions in the series the net magnetic charge of the whole
system is always negative one. By letting Mo to be the net magnetic charge when
the radius of the enclosing sphere tends to zero at the origin, we can write,

M
o

- ~ -{27l" {7l" (aSinQ. a{3 _ asio a 8(3) dBd¢
471" Jo Jo 8e 8¢ B¢ Be r-+O

1 17l"- - -sina = 1.
2 O,r-+O

Similiarly, the net magnetic charge) Mo, at the point singularity of the solution
is independent of the value of m. In fact,it is true that when r < 2m+~m:"l,

the topological magnetic charge is one, and when r > 2m+~m~1, the topological
magnetic charge is negative one. Hence there is a I-monopole located at r = O.

We also notice that we can write the net'magnetic flux per 4rr sterad passing
through the spherical surface. of a partial enclosing sphere of radius r, sustaining
an angle Bat the origin with the positive z-axis as

() ,

('ljJ(r) cos () - R(B) sin 8)

2J'ljJ2(r) + R2(e) 0

_ .! {-'l/J(r) case + R(B) sinB + 'l/;(r) }.
2 J'lj;2(rY+ R2(B) I'l/;(r) I

7
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The Al solution of Ref. [7] and (8], when m = 1, is the second member of this
axially symmetric monopole solutioils,

(25)<pa =

1 {' 2 - r
3
. '} ("" "") 1 ( " " );: 1+ r 3 · ()a¢J.l- - ¢aoJ.L +;: tan () ¢afj.t - faq;J.l- ,

1{2 - r
3

} "a 1 B e"a- -- r +-tan .
r 1 + r3 r

It was first thought to consist of a I-monopole at r· = 0, surrounded by two
antimonopoles located at the zeros of the Higgs field at z = ±~ = ±1.2599.
However, a closer study of this solution reveals that the I-monopole actually has
a zero size MAM structure along the z-axis and hence possess a net unit magnetic
charge. This MAM structure can be read from the plots of Eq.(24) , Mr{B) versusB
for the cases of r --t 00, Fig.(I), and r --t 0, Fig.(2). Fig.(I) indicates that there is
zero flux through the spherical shell at infinity when e =1= ~ rad. Hence all the flux

.at infinity is radially inwards along the equatorial plane towards the origin giving
a net topological charge of negative one for the m = 1 configuration. Fig.(2) shows
that the net flux through the upper (0 < () < ~) and lower (~.< () < 7f) spherical
shell at small r is +471" each and the flux through the circle when () = ~ is -47f,
hence indicating a MAM structure for the I-monopole at the origin.

By plotting the magnetic field of this configuration we can confirm that at large
r, all the magnetic field lies in the equatorial plane. and is pointing radially inwards
as the net magnetic charge Moo is -1. A plot of the magnetic field lines is shown
in Fig.(3). The magnetic field lines do not converge at r = 0, showing the presence
of a composite MAM I-monopole. Hence the pole at the center of the composite
monopole is an antimonopole surrounded by two structural monopoles at zero
range from each other and yet they do not annihilate each. In factthis composite
I-monopole seems to have been "polarized" by the two outer a,ntimonopoles at
z = ±~, leaving an antimonopole at its center. The antimonqpoles situated at
z = ±-¢'2 form dipole pairs with the nearest monopoles ~f the MAM structure,
thus screening off all the magnetic field above and below the equatorial plane at r
infinity. There is no vortex ring in this configuration.

The vortex ring appears when m = 2, that is, when the gauge field potentials
and Higgs field are respectively

Aa ! {3 - 2r
5

} (euJ; _ J;a{j ) +! {6cosBsinO} (¢af _ fal/; ),
/-L r 1+ r 5 J.l- J.l- r 3cos2 B-1 p. J.L

<I>a = ~ {3 - 2r
5

} fa + ! {6cos Bsin ()} {ja. (26)
r 1 + r5 r 3 cos2 B-1

The plots of the magnetic flux, Eq.(24), versus (), for values of r at infinity, Fig.
(4), and r --t 0, Fig;(5), reveal that the composite I-monopole at r = 0 is that of
a MAMAM structure.

The two outer antimonopoles are located at the two zeros of the Higgs field at

z = ±\13/2 = ±1.0845, and the vortex ring is located at the ring of radius 1.0845
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4 COMMENTS

We have obtained exact axially symmetric A-M-A configurations of the SU(2)
YMH theory which are characterized by a positive integer parameter m. The 1­
monopole is located at the origin, r = 0 where the Higgs field is singular. The
two outer antimonopoles are located at the two zeros of the Higgs field along the
z-axis at z = ± 2m+\!(m + l)/m. When the parameter ~ exceeds unity, neutrally
magnetic charge vortex rings start to appear around the z-axis. The number of
vortex rings in the solution is equal to (m --: 1). .

Further investigations reveal that the "1-monopole at the origin is not struc­
tureless but in fact corresponds to a zero size composite monopole lying along
the z-axis. By induction we conclude that the number of poles in the composite
monopole is given by 2m + 1. When m is even, the center of the structure cor­
responds to a monopole and when m is odd, it corresponds to an antimonopole.
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