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I. INTRODUCTION

For the palm oil mills in Malaysia, the palm oil waste materials, i.e. fibre and shell are used as

fuel as away to save the biomass material being exhausted. In other words, the palm oil mill

can independently utilize the waste material to produce electrical enerry. However, the use of

these biomass materials greatly releases emission from the chimney to the atmosphere. From

the combustion process, the pollutants released mainly consists of Carbon Monoxide (CO),

Particulate Matter @M), Nihogen bxide (NO.) and Sulphur'Dioxside (SOt. According to a

survey in 1999, only 76Yo of the 309 palm oil mills in operation meet the allowable limit of

emission [l]. According to Leongl2l,for every 1 tonne fresh fruit bunches (FFB) burnt, 1.5

gA.lm3 particulate level is produced. For a typical 500 000 tonnes of crude palm oil generally

produced from a mill in ayexr, it may require the burning of 17 500 000 tones of FFB. This

may result the release of the pollutant of 1 to 1.5 tonnes particulate matter to atmosphere per

mill. For an extended period, this level of pollution will certainly threaten the lives of human.

animals, plants and buildings.

The smoke emission factors are something that are complex, and are influenced by

many processes. The factors such as combustion, boiler process and mill process are related

to each other in producing emission from steam power plant generation. The combustion of

fibre and shell is recognized as the main factors for boiler emission due to the fluctuating fuel

flowrate entering into the fumace. The variable fuel flow affects combustion, steam

generation, electric energy and finally the emission [3]. Despite the fuel transfer system being

driven constantly by motor to supply the fuel, the problem exists as fibre and shell inlet

capacrty is not stable in the trolley. It will also cause fluctuating calorific value and moisture,

or fuel quality interrupting the combustion rate and its temperature. Briefly, not only fuel

capacity causes the emission, but also the fuel types and its quality play arole in the emission

production and cannot easily be conholled.



Steam generation from palm waste material combustion depends on the power load

required. Li and Priddy [4] said the processes and power needed influence fuel inlet capacity,

air and water. When power is unstable, it influences other factors to change their parameters

automatically. High power electricity requires low pressure and high temperature steam [3].

Therefore, the electric energy generated from turbine is proportional to the mill operation

which involves many processes. The ventilation system is automatically controlled by the

fuel inlet and inlet water capacrty. The air supply will increase when excess of water in boiler

drum and fuel flows in the furnace exist. Although excess air supply is to achieve complete

combustion, it also causes low combustion temperature and in return producing NO* gas.

However, less air supply causes CO emission with attendant less steam generation. It will

decrease boiler efficiency, power turbine generation and interrupt optimum heat transfer. As

a result, the air capacity, temperafure and excess air are so complex to control and optimise in

order to minimize smoke production. These processes are related to each other and are highly

non-linear. They cannot be illustrated by direct equations to forecast the emission.

As discussed, the complex factors and contributors to many processes in the palm oil

mill have no direct or simple relationship in predicting the emission. The operations in the

palm oil mill, the processes and operations involve furnace, boiler and turbine which are

closely related to each other. Figure I illustrates the factors complexity to emission such as

steam pressure (Sp), steam capacrty (Sc), feed water (Fw), steam temperature (St), fumace

combustion (Fc), boiler outlet (Bo), water level (W), ambient temperature (At), flue gas

temperature (Ft), excess air (Ea), fibre flowrate (Ff), shell flowrate (Sf), power output (Po),

oxygen (Oz) and carbon dioxide lCOz). The output emissions include carbon monoxide (CO),

nitrogen oxide (NO.), sulphur dioxide (SOz) and particulate matter (PM). This Figure also

simplifies process of input and output variables. Controlling emission can be done if the

process ofinput factors can be controlled as the input indirectly is responsible forthe outputs



or pollutants. As these parameters are highly complex and non-linear? arny activity happening

inside the process can be regarded as a black box. The main concern from this process is to

monitor and control the release of emission. As the whole process involves the cause and

effect or input and output, ANN is found to be feasible method to model the boiler emission

from palm oil mill.

In this paper, ANN is applied to monitor the release of the emission from the palm oil

mill. ANN is briefly discussed and later the method of selecting the major and minor input

variables is explained.

2. ARTIFICIAL NEURAL NETWORK AND ITS APPLICATION IN THE

PREDICTION OF EMISSION

ANN is adapted from human biological neuron that reacts to give result after receiving

the information [5]. Actually, this ANN is the integrated combination between signal

processing using mathematical formula that function as a human nerve. Neural networks

must learn how to process input before they can be utilized in an application. The process of

training a neural network involves adjusting the input weights on each neuron such that the

output of the network is consistent with the desired output. This involves the development of

a training file, which consists of data for each input node and the correct or desired response

for each of the network's output nodes. Once the network is trained, only the input data are

provided to the network, which then recalls the response of the network leamed during

training.

Information received by neuron determines the command signal product either to the back or

forward or to lateral. Maren et al. 16l stated the characteristics of the ANN structure can be divided

into three basic models; i.e. feed forward network, feed backward network and lateral network. Feed

forward network is indicated by the neurons supplying the output to the next neuron layer only while

feed backward network enables the neurons to supply the output to the next or previous neuron.



Lateral network is a network when the output becomes the lateral input neuron. The network layer can

be classified into single layer, bilayer and multiple layer. Bilayer networks have feedforward or

feedbackward without lateral network. Multilayer network consists of one or more hidden layers.

Current study uses feedforward structure and backpropagation algorithm as they are suitable for

modelling boiler emission. Feedforward network is a fast trained stable network which is suitable for

nonlinearity. The utilization of backpropagation in the project is selected due to its acceptability to

learn the problem effrciently. The structure and algorithm is very widely used due to its successes in

several applications [7-9], especially in boiler emission model [7-8]. Backpropagation ANN is a

versatile tool and has been successfully applied to a wide range of complex science and engineering

problems.

2.1 Review of Published Works in Predicting Boiler Emission

Grott [7] has reported successful boiler emission modelling in Rheinbran Corplent and

Health Project in German and Ostrulak power plant in Poland. Other projects are petroleum

refinery factory in Anaco, Texas city, Westinghouse power plant, Wisconcin electric plant,

Florida and Pavilion power plant in USA. In Britain, the same successful projects are also

developed by BCURA (British Coal Utilization Research Association), GNOCIS (Generic

NO* Control Intelligent System) and DTI (Department Trade and Industry) [7,11] Interested

readers can refer to paper based reviews [8,12-15] to find more success study of application of

ANN in boiler emission controlling.

Table I summarizes several papers related to current study of predicting boiler

emission by using ANN. Several of them used ANN to control boiler emission as a

substitution in using CEMs at coal power plant. However,fl6,l7l implemented NN at paper

mill boiler, [8] used it at incinerator and [19] used NN to predict biomass gasification.

Therefore, most of the papers in Table I describe about the utilization of NN at coal power

plant and only [9] focuses on biomass emission modeling. No one yet applies on palm oil

mill boiler emission that uses biomass as fuel.
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Table I also shows the input and output variables, as obtained by the 18 researchers in

ANN boiler emission modeling. Based on the papers, some researchers applied different

variables from other researchers even though to predict the same pollutants. For example,

Radl and Tronci l20,2Il focused on predicting CO and NO*, but they used different input

variables. However, the use of different input variables does not greatly affect the prediction

accuracy.

' Based on the papers 'listed in Table 1, the number of times certain input and output

variables used in the prediction can be counted. From the total of the last row in Table l, fuel

capacity and excess air are commonly used as input variables (total 10). The second

commonly used input variables are air capacity, air fuel ratio, and combustion temperature.

These variables are chosen depending on the processes and factors that contribute to the

pollutants. Based on their investigation and experimental results, some researchers employed

different variables as input parameters to predict the output. For example, to model NO* as an

emission from coal boiler, Rowland [22] used air capacity, fuel capacity, excess air, ambient

temperature and firing rate as input variables. However, Grott [7] found hooter flame

temperature in combustion process caused NO" released, while [17] justified that NO*

emission was due to the pneumatic conveyer transportation system. As a result, Grott [7]

used air capacity, air fuel ratio, combustion temperature, firing rate and boiler effrciency,

while Euhos and Blanc [17] employed air capacity, air temperature, fuel capacity, combustion

temperature and excess air as input variables. Thus, the input variables cannot easily be

determined and they depend on the processes and conditions contribute to the,pollutants.

So far to predict 8 output pollutants, the researchers have used 20 input variables as

listed in Table 1. Radli and Troci et. al. l20,2ll focused on predicting CO and NO* only,

while other researchers 118,19,23,241 canied out work to predict various pollutants. The

production of NO", CO and PM increase is due to the maximum combustion under unstable
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load contributed to fluctuating of air fuel ratio 1241. So far from the literature, nobody has

compared the simulation boiler emission with 2 or more different mills as reported by EpA

USA. The successful Pavilion project installation of 200 PEM in USA used their own power

plant data collection to validate RATA @elative Accuracy Test Audit).

The input and output variables need to be measured during the data collection. There

are online or offline data collection that can be carried out, but most researchers used online

data collection as it can give data in'real-time sequence. For input data collection, Laux [25]

used electric charge transfer system (ECT); }Jou et.al. [26] applied digital computer signal

(DCS) and other people employed sensor and gage that interface with software to collect the

data through online. Most of the researchers used the available continous emission

monitoring system (CEMs) in order to determine the pollutants amount. Androscoggin U8l

used source sampling method and Kamal [24] used elechic static precipitator to collect pM.

In this paper, the data collection from steam plant palm oil mill is taken at five locations

(turbine, boiler, fuel inlet, exhaust and stack chimney). These locations are chosen as the

sources ofthe input and output variables, totalling to 15 input variables such as fibre, shell,

steam generated etc as shown in Figure 2. Output variables of emission (CO, NO*, SOz and

PM) are collected from the stack chimney. The data at boiler and steam turbine are directly

taken from their reading display. However, at fuel inlet capacity, the fibre and shell capacity

have to be weighted manually since no automatic measurement is available. Gas analyser and

isokinetic sources sampling are utilized at the stack chimney to measure the pollutants

released.

2.2 Use of Sensitivity Analysis via Neural Network (SANN) to find Major and Minor
Input Variables

Each output is caused by several different input vaiabtes. These input vaiables influence

and contrihute to output vaiables. Some ceftain variables might have big contribution or influence to

ceftain specific output variables only, and some might give small influence to those speciftc output
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variables. The input variables which have great impact on a parlicular output vaiable are called maior

input vaiabtes whereas which give small impact on that pafticular output variables are called minor

input variables. Major input variables reduce simulation time, increase pefiormance and make the

model more generalized. AII 15 input parameters taken can be divided into maior and minorvaiables.

ln order to reduce and eliminate minor input variables several methods have been proposed by many

researchers through sfafisfibs and neural network simulation. ln neural network approaches, several

methods can be used such as seguenfial zeroing weights (SZW, sysfem vaiation variables (SVV}

sensitivity anatysis.(SA), fuzzy curues, changing mean square error and analysis of effectiveness. ln .

this research, the sensitivity analysis is canied out to identify minor and major input variables used in

boiler emission modelling. Most reserchers such as [27-29] suggesfed using paftial differential

sensitivity analysis. All types of SAfV/V can rank and select the maior and input variables through its

analysis. Present study willused SANA/ using partial diffrential approach as if was successfully used

by other researchers. Sensitivity analysis with paftial differential is based on calculation of input,

weights and output variables from the ANN simulation [27]. AII neural network models for sensitivity

analysis use the training data to perform sensitivity value. By referring to sensitivity value, the input

variables can be ranked for their contribution to the output. The results with a value more than 1

represent major factors and the value less than 1 represents minor factor.

Prior to ANN application, an approach is required to make the network structure

optimum in order to achieve generalized and high accuracy network with less simulation time.

During toaining, neural network will learn from input data and adjust the weight smoothly to

give desired output. Accordingto Maren et.al.[6], the number of hidden layers depends on

the data, which can be determined through training. More number of hidden layers cause long

time for training and will produce unstable network [30] and overhain [9]; but it produces

better results [31]. The suitability of time and accuracy must be considered. Trial and error

method is usually applied to get the optimum nodes and layer numbers [6]. High number of

hidden layer/nodes causes a slow time for training, but usually gives better prediction. In

contrast to tha! less number layer/node gives incorrect prediction. As a result, to find an

optimum structure through the trial and error method, time for training, number of iterations
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and square error achieved by network with different hidden node as indicated by 'h' in Table

2 should be considered. In this research, only single layer is employed refening to

Kolmogorov's theorem [32]. Briefly stated, Kolmogrov claimed that a single hidden layer or

three layers backpropagation network is enough to map any function to very high precision

and better prediction.

After obtaining the optimum structure for all 5 model of simulation (4 for each output

and 1 foralloutput), the SANN are carried out. AThinkPro software version 1.05 is utilized

for this purpose. The software uses neural network setting parameters as shown in Table 2.

In this study, the Levenberg-Marquart algorithm is used as suggested and used by many

researchers [8,30,33-35]. During this neural network process, the weights and bias are

initialed in randomized order. For a present task, to minimize the time taken for simulation,

and also to follow a common practice regarded to be successful, the learning rate value of

0.01 and momentum 0.95 are utilized. Both values are applied as initial value for a network

that can be adjusted during training. The weights are automatically adjusted depending on

the learning rate and momentum to obtain minimum comparison value between actual and

predicted output using backpropagation method. The simulation stops after reaching 1000

epoch or square error of 0.001 between the actual and predicted value.

2.3 Parameters Settings of Neural Network

After obtaining the optimum structure of the network and before ANN simulation is

carried out, the ANN parameters are needed to be optimized in order to obtain high accuracy,

less simulation time and low square error networks. These are carried out similar to the

SANN approaches, but the parameter optimization is focused on transfer function and scaling

method. The hansfer functions utilized are logsig, purelin and tansig for the connection

between the input, hidden and output layers. These three parameters are interchanged with

each other such as logsig purelin, tansig purelin, logsig logsig, tansig tansig, logsig tansig and
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tansig logsig as combination of transfer functions. A technique based on the hial and error

method is employed as successfully done by other researchers such as 15,36,371. For scaling

method, many different approaches can be applied such as conventional method, standard

deviation & mean method and minimum & maximum method. These three scaling methods

and transfer functions are exchanged together to find the optimum parameter settings based on

the time requirement, accuracy and error of goal achieved by the network.

A full ANN models are then conshucted based on similar concept to SANN, but it

requires prolonged simulation process. The boiler emission model simulation process uses

training, validation and testing in order to obtain a generalized model [38]. Training period is

an initial approach to create randomized weights that will be adjusted to achieve a certain

square error. During validation stage, the final weights from training period will be updated

using simulation for new sets of naining data obtained from lower square error than training

period. This is also known as generalization phase in which a wider range of data value is

used than in the haining period. In order to veriff the network either successful or not, the

testing period data is needed. In this testing period, input data that are excluded from both

training and validation periods are used. The training and validation periods are needed to

increase the network capability, accuracy and will solve the overfitting problem that is always

faced by feed forward back propagation. This problem is the error shown during haining is

small, but large error occurs during testing section [5,39]. A low error between actual and

predicted output indicates the accuracy of the model.

RESULTS AI\ID DISCUSSION

Modelling Boiler Emission for Mill No. I

3.

3.1
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3. I . I Sensitivity ln a/ysr Neural Network (SANN)

Prior to the sensitivity analysis, trial and error method as discussed is employed to

optimize the NN structure. For example, Figure 3 shows the results of trial and error method

for CO. From the graph, the optimum structure can be determined from the minimum mean

square error (mse) of 0.0089239 at the value of 27 (number of hidden neuron). So, the

optimum structure for CO model is [15,27,11 as illustrated by Figure 4. The first column

refers to the input neuron number, the second column for the number of hidden nodes and

the third column for the number of output nodes. Similar procedure is carried out for other

output variables to find optimum structure of NN and the results are as follow:

NO* 1r5,27,ll

SOz ll5,28,ll

PM U5,26,17

With the same trial and error method, the optimum structure of [ 5,30,4] is found for multiple

input and output model. The minimum mse for multiple output is slightly bigger than that for single

output because of more than one oulput neurons used in the output layer make the network difficult for

prediction.

3.1.2 Major and Minor Input Variables Selection

The SANN is carried out to find the major and minor input variables to the emission

released based on the above optimum model structures. The analysis is carried out by

'ThinkPro' software using all sets of data and the results are shown in Table 3. Based on the

sensitivity analysis, the ranking of all input parameters for each pollutant is established.

Minor input variables are represented by the value less than 1, while major input variables

are indicated by the value more than 1. The SANN values with the bold show the major input

variables for the correspondin! output. As shown in Table 3, about 40 o/o from all input

variables are major input variables to CO, while about 47 % to NO'. However, the

percentage of major input variables increase for both PM and SO2, i.e. about 60 %. For

multiple output model, about 60 o/o from all input variables are major input variables. These
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major input variables are slightly different from the single model. Different emission outputs

demonstrate different major input variables from all 15 input variables.

ln general, the main contributors to the emission come from fuel, turbine, air and

boiler parameter. From SANN and CC analysis, fibre and shell appear as major cortributors

to all pollutants. For multiple output models, only 9 out of 15 input variables are found to be

major input variables.

3. 1 .3 Optimization of Structure and Parameters

The scheme to find optimum structure are caried out here similar to the procedure in Section

3.1.1, but only the major input vaiables are utilized to find suitable number of hidden nodes. This

approach depends on the results determined from Section 3.1.2 in which inputs are the major input

variables. The major input variables for each model are different from each other. The CO model

employs 6 input vaiables, NO, 7 major inputs, SO2 9 major inputs and PM 9 major inputs. For

multiple output model, only 6 major variables are used. From the structure optimization analysis using

trial and enor method, the optimum structures for the models are as follows:

co

NOr

SOz

PM

Multiple

[6,10,1]

[6,101]

[e,18,1]

[9,17,1]

[9,18,4]

After the optimum structures for the neurons are achieved, the investigation is fufther canied

out to find the optimal parameter for each network. To define the optimal parameter setup, the

considerations should refer to the accuracy, simulation time and number of epochs or iterations taken

by the models. The parametic study of the parameters used for ANN is cariqd out and the results

are as follows:

co

NO,

SOz

PM

minmax-scaling with logsig purelin transfer functions

minmax scaling with logsig purelin transfer functions

stdmn scaling with tansig purelin transfer functions

minmax scaling with logsig purelin transfer functions
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Multiple stdmn scaling with tansig purelin transfer functions

3.1.4 Simulationwith Single Output Models

Single output model with all input variables and with only major input variables for

each pollutant are developed. The regression analysis between actual and predicted output is

applied to demonstrate the accuracy of the models as shown in Table 4. It shows the r-value

for training, validation and testingperiod for both models. Both models show accurate

prediction during haining and validation and a slight deviation for r-value in the testing

segment. In Table 4, number 1 refers to all input variables and number 2 refer to major input

variables only. The model for major input variables gives better accuracy than all input

variables model as demonstrated by high r-values. Therefore, the results from major input

variables model is used to make comparison between actual and NN prediction for the

emission.

Figures 5.a, b, c, and d show the comparison values between actual and predicted

values by NN for CO, NO*, SOz and PM respectively. The predicted values of CO by NN are

almost at the same values with the actual value collected from the mill. High accuracy is

obtained where the average error is only 0.1 %o. The maximum percentage error in testing

part is about 5.4 o/o at data point 110. For NO,., the same pattern for both the actual and

predicted values is obtained as shown in Figure 5.b. The average error is 0.5 % and the

maximum error of 5.8 o/o occurs at data point number 97. High accuracy of prediction is also

obtained for SOz and PM as shown in Figure 5.c and,5.d respectively. The average error for

both predictions is less than 1.0 Yo and the maximum percentage error for both predictions is

less than 8.5 %.
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Based on these results, NN can accurately predict the value for all the emission. The

accuracy of the prediction is very high as the average error for all the prediction is less than2

%o and the maximum percentage error is less than8.5 %o.

3.1.5 Simulationwith Multiple Output Model

Figures 6.a,b, c and d show the comparison between predicted and actual outputs for

multiple outputs for CO, NOp SO2 and PM respectively. The simulation took 113.59 seconds

computational time to get 2.16E-15 mse for training and 9.42E-15 mse for validation. The

multiple model shows the lowest mse due to a high number of hidden nodes to predict the

output. On the whole, the figures show that NN with multiple output can predict accurately.

The average error between the predicted value and experimental data for all pollutants is

within 6 %o with maximum error within 16 o/o occurs during the testing period. The details of

the average error and maximum error for each pollutant are as follows:

CO average error 0.2 Yo and maximum error of I2.9 % atdatanumber 97

NO" average error 2.0 %o and maximum error of 8.3 %o at datanumber 112

SOz average enor 5.1 %o andmaximum error of ll.8 %at datanumber 112

PM average error 2.7 Yo and maximum error of 15.8 % at datanumber I 10

3.1.6 Comparison Between Single and Multiple Output NN Modelling

The comparison between the single and multiple model of NN can be made by

referring to the iterations taken by the network to converge, mean square error (mse),

maximum error achieved and the time required during the whole simulation. Both amount of

epoch and time used by multiple model is better than those of single model. The mse of

multiple model also gives lower square error than single models. However, the single model

give better accuracy where the maximum error is less than 8.5 % compared to the multiple
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model which is 16 %o. The single model also gives better accuracy where the average

percentage error is less than 1.5 o/o compared to the multiple model which is 2.5 %o. Thus,

single model can predict better than the multiple output model. However, both models can be

employed for the emission modeling as the average error for prediction is very small, i.e.

2.5%.

3.2 Modelling Boiler Emission for Mill No. 2

By using the previous procedures and equipments, the 65 sets of data are collected from

another palm oil mill at Selama, Perak. This palm oil mill used similar boiler's specification as the

first mill, but this mill No. 2 uses newer steam power boiler than the mill No. l.

3.2.1 Major and Minor Input Variables

The analyses of new data collected from mill No.2 use the methods similarto mill no.l.

Based on SANN, the major and minor input vaiables for each emission are the same as previously

obtained from mill No. L The utilization of neural network sensitivity analysis is accomplished well to

both data samplings. Therefore, the previous optimum structure of major input variables will be

applied in NN simulation.

3.2.2 ANN Model

In this simulation, similar procedure as in the first mill is employed to mill No. 2 data. The

optimum model and parameter settings of all input variables for the previous simulation of mill No. I

are utilized to update the weights of the new data collected from the second mill. All input variables

and only major input variables are cmried out to model NN where all input variables are simulated in

order to make comparison with MLR which also uses all input variables.

Figures 5.7.a,b, c and d show the comparison between predicted and actual outputs

for single output for CO, NO,, SOz and PM respectively. The simulation took 44.00 seconds

computational time to get 3.lIE-7 mse for validation. On the whole, the figures show that
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NN with multiple output can predict accurately. The average percentage error between the

predicted value and experimental data is within 6 o/o with maximum error within 12 %o is

obtained. The details of the errors for each pollutant are as follow:

CO average error of 0.6 Yo and maximum error of 7.8 %o at data number 60

NO* average error 1.9 Yo and maximum enor of 8.9 o/o atdatanumber 63

SOz average error 3.5 %o and maximum error of ll.8 % at datanumber 112

PM average 3 .0 %o and maximum error'of 7.9 Yo at data number 57

As determined from mill No. 1, multiple model output NN model with major input

variables gives better prediction than multiple model with all input variables, therefore

multiple output NN with major input variables model is employed to mill No. 2. Figures

5.8.a, b, c and d show the comparison of values between predicted and actual values for

multiple output NN model. It converges at 144 epochs with 3.584 sse and asng 221.62

seconds simulation time. Those figures demonstrate similar results for both actual and

predicted values during early validation phase. The average percentage error of 1.0 yo,2.5 yo,

4.5 % and 3.3 o/o is achieved for CO, NO', SOz and PM respectively. The maximum

percentage error for CO model shows 10.5 yo, NO" model gives 12.5 %o, SOz model produces

I3.l % and PM model gives 14.5 %;o.

The comparison between the single and multiple model of NN can be made. Both

amount of epoch and time used by multiple model is better than that of single model. The

mse of multiple model also gives higher square error than single models. The accuracy of the

single models are better with less than 10 percent for maximum percentage effor whereas

multiple model shows around 15 percent for maximum percentage error, while the average

error of single model is also less than multiple model of major input variables. Thus, the

results for the single major variable model are better than the multiple output in terms of

accuracy. The error predicted increases during simulation period for most models. It is due
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to the data used to update weights are different to the previous mill. Either single output or

multiple models can be employed to predict the CO, PM, NO* and SOz output for mill No. 2.

4. CONCLUSION

In this paper, the following conclusions can be made:

a) The major and minor input variables are identified and they turn out to be same for

both palm oil mills

b) ANN modeling with major input variables gives better accuracy and speed

c) Single and multiple output models can be used in ANN modelling of palm oil mill

emission

d) ANN predicts well and agrees with the actual data taken from the palm oil mills.
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Table 2: Typical neural network setup for sensitivity analysis

Structure Feedforward

Algorithm Backpropagation

Type of training Trainlm

Network structure lr5,h,ll4l
Transfer function Sigmoid and linear

Number of iterations 1000 (max epoch)

Performance function Mean square error (mse):1x10

Data scaling Standard deviation and mean

Learning rate, 11 0.01

Momentum,cr 0.95

Table 3: The results for sensitivity analysis and their ranking of input variables contribution to
the emission for mill No. I

Variables co Rank NO* Rank SO" Rank PM Rank Multinle Rank

Sp 0.86684 t2 1.55302 I 1.07971 5 0.90396 l2 1.20349 I

Sc 1.06865 4 0.99319 8 1.03235 8 0.99237 l1 0.83873 l4
Fw 0.96484 l0 0.92563 ll 1.30689 I 1.03918 8 1.14398 2

st 1.05742 5 0.98979 9 t.10477 3 0.90155 13 1.06845 5

Fc 0.9989 7 1.00994 6 1.0873 4 1.22868 1 1.00167 9

Bo 0.99307 8 0.73308 l4 0.7t66r l5 L.09274 4 t.026ll 7

wl 0.99151 9 0.71747 15 0.72699 t4 1.05451 6 0.8017 15

At 0.82782 l3 0.864s9 l3 0.95746 l0 1.00005 9 0.94437 10

Ft 0.73764 l5 0.97334 10 1.07918 6 1.05155 7 0.88853 l3

Ea 0.96355 1t 1.00618 7 0.9331 I t2 0.77389 l5 0.928 11

Ff 1.0067 6 1.07738 ) r.03274 7 1.06324 3 1.03693 6

Sf t.r42t3 aJ 1.0813 4 t.0tt25 9 1.10966 2 t.0l9l2 8

Po 1.17815 2 1.45547 2 1.18367 2 0.99977 10 1.08743 3

Oz 1.58434 I 0.91663 l2 0.9s364 lt 1.05697 5 1.08454 4

COz 0.81222 T4 1.10301 3 0.89433 l3 0.83187 t4 0.92696 t2

28



Table 4: Regression analysis between predicted and actual output for all single models
using all input variables and major input variables for mill No. 1 by Neural

Network

r-value
CO N0, SOz PM

Trainins I I I I
Validation I I I I
Testine (all) 0.9964 0.9946 0.9968 0.9527
Testine (maior) 0.9983 0.9991 0.9994 0.970r

Exeerr
*lr

Flbcr

Shcn .
llowrrte



Figure l: Input and output parameters for a typical boiler emission
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Figure 2: Selected input variables for fuel, exhaust, turbine and boiler parameters
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Figure 3: Finding the best structure of CO neural network for NN by sensitivity analysis
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Figure 5: Results comparison between actual and single model of NN for a) CO, b) NO*, c)

SOz and d) PM for mill No' I
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Figure 5.7: Results comparison between actual and single model ofNN for a) CO, b) NO*, c)

SOz and d) PM for mill No. 2
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Abstract

The present stu dy utilized acombination ofartificial neural network (ANN) and genetic algorithms (GA) to optimize the release of emission

from the palm oil mill. A model based on ANN is developed from the actual data taken from the palm oil mill. The predicted data agree well

with the actual data taken. GA is then employed to find the optimal operating conditions so that the overlimit release of emission is reduced

to the allowable limit.
@ 2004 Elsevier Ltd. All rights reserved.

Keywords: Emission control; Neural networks; Optimization; Genetic algorithms

1. Introduction

The emission released from the palm oil mill in Malaysia

has quite significant environmental impact. The use of
biomass material from the palm oil byproduc! i.e. fiber and

shell as fuel is identified as the main cause of the emission

released. Economically, the usage of palm waste material as

fuel is seen as productive as this material will not be wasted.

However, the combustion process in the furnace of the boiler

releases the emission such asparticulate matters @M), carbon

monoxide (CO), nitrogen oxide (NO2) and sulphur dioxide
(SOz). The monitoring and control of these pollutants from
the palm oil mill is a great concem to the community' Cur-

rently, the limit is set by the Departrnent of Environment
(DOE), Malaysia, as shown in TSle l.

It is well known that the emission released depends on

many complex factors which are either directly or indirectly

related to each other and are influenced by many variables'

* Conesponding author. Tel.: +60 5593 7788; fax: +60 4594 l0l3'
E-mail address : chlatif@eng.usm.my (A.L. Ahmad).

0098-1 354/$ - see front matter @ 2004 Elsevier Ltd. All rights reserved.

doi; 10. I 016/j.compchemeng.2004.07.034

These variables can appear from the combustion process,

boiler process, etc. The unsteady fuel flow affects combus-
tion and the emission released (de Nevers, 1999). Despite

the fuel transfer system being driven constantly by motor
to supply the fuel, the problem exists as fibre and shell in-
let capacity is not stable in the conveyor. It will also cause

fluctuating calorific value and moisture, or fuel quality in-
temrpting the combustion rate and its temperature. Not only
fuel capacity causes the emission, but also the fuel types and

its quality play a role in the emission production and can-

not easily be controlled. These processes are related to each

other and are highly non-linear. When a particular operation
changes, the new optimum parameters cannot be determined
immediately.

The current work deals with the monitoring and control
of the emission being released from the palm oil mill. An
ANN is developed to model the pollutants released under

various operating conditions. When the pollutants released

are beyond the allowable limits, GA is then applied to find the

optimal input parameters that release the allowable pollutant
level.
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Table I
Standardization of exhausVchimney separation (dc Ncvcn, 1999 and Malaysian Ministry of Industry's 2nd Mandate, 1993, DOE, EPA-USA)

A.L. Ahmad et al. / Computers and Chemical Engineering 28 (2004) 2709-27 I 5

Pollutants

NO, co

DOE Malaysia (mgA.{m3)

Tenaga Nasional Berhad (TNB) (mgN m3)

Typical North America (mg/t{m3)
World Bank (mgA'{m3)
Typical ASEAN (mgA{m3)

Typical Europe (mgA.I m3 )
Typical ASIA (mgA.Im3)

Ministry of Industry (mgN m3 or ppm)

400
40
50

400
100

100

100

400/3sl

3500

980-1480
150
750

850-1700
1430

1430

470D50

1700

615-1640
650
5s0

940
720
720

1300i500 1000/870

2'. Modeling and optimization method by using
genetic algorithm and artificial neural network
(GAANN)

Due to its ability to model complex and nonlinear prob-

lems, the widely accepted method, artificial neural network
(ANI.I) is chosen to model the complex behavior between in-
put and output in the process of releasing emission from the

palm oil mill. It has been used extensively in many fields such

as forecasting, pattern recognition, robotics, etc. It is origi-
nally based on the human thoughts of receiving and hansfer-

ring the information in making decision. A simple model of
ANN consists of an input layer, a hidden layer and an out-
put layer. With sets of input-output pattems stored in input
and output layers, the hidden layer interconnects different
strength of information from the input to the output layers,

through so-called weights. The weights are adjusted in the

Ieaming process in which all the patterns of input-output are

presented in the leaming phase repeatedly. There are many

learning algorithms available and the most popular and suc-

cessful leaming algorithm used to hain multilayer network
is the back propagation scheme. Any output point can be

obtained after this learning phase, and good results can be

achieved. In this study, a feed forward back propagation with
one hidden layer is employed for ANN modeling. The number

ofneurons for input and hidden layer can be determined de-

pending onthe optimizationprocess using sensitivity analysis

by neural network (SANN) and coefficient correlation analy-

sis (CC). Commercial software of MATLAB Version 5.3 and

Neural Network Toolbox from Mathworks Inc. (MATLAB
User's Guides, l99E) are used to generate neural network

modeling. The stopping criteriaused in the current studywas
set at 1000 maximum epoch number, and the characteristics

of the training set was hain multiplayer (Trainlm). Whereas

the validation set and the testing set was set once the differ-
ence between sum square error ofthe actual and predicted

valuesis <1 x l0-3.
Genetic algorithms (GA) is an optimization algorithm

based on the principle of survival of the fittest during the

evolution. In nature, individuals must adapt to the fre-
quent changing environment in order to survive. Holland's
proeosed GA (1975) is based on this process where GA
mimics the evolutionary processes of the nature. GA is one

of the strategic randomized search techniques, which are

well known for its robustness in finding the optimal or near-

optimal solution since itdoes notdepend ongradient informa-

tion in its walk of life to find the best solution' The approach

uses and manipulates a population of potential solutions to

find the optimal solution. A generation is complete after each

individual in the population has performed these genetic oper-

ators. The individuals in the population will be better adapted

to the environment, as they have to in order to survive in the

subsequent generations. In GA, environment is defined as

the objective function or fitness function for a specific opti-

mization problem. By favoring the optimal and near-optimal

individuals in each generation, the average fitness level in
the population is expected to improve over time. The inter-

ested readers can look into more comprehensive texts such

as Goldberg (19t9) for a complete explanation of GA.

Several researchers employed genetic algorithm and arti-
ficial neural network (GAANN) in their applications to get

optimal operating conditions or parameter set up for the in-
put variables such as in a finry controller for fruit storage

(Morimoto, Suzuki, & Hashimoto, 1997), in conhol sys-

tem (Sette, Boullart, & Langauhore, l99t), in stereo lithog-

raphy process (Cho, Par, Chi, & Lov,2000); in fluidized

controlling cracking catalytic (Zhao, Chea, & Hu' 2000), in
chiller system (Chov, Zhang, Lin, & Song,2002) and in coal

combustion (llou, Kefa, & Jianbo,2001).

In this paper, ANN is combined with GA to get the op-

timum value. To search for the optimum, GA requires the

predicted value from ANN. ANN then employs GA to gen-

erate parameters as a new input to predict the new output

value. Consequently, both GA and ANN programs should

be linked-up and exchanged data with each other. In current

study, the procedure adopted is as follows. First GA writes

the selected input parameters that are written in the tent file.

The text file is then read by the ANN and received as a new

input parameter. Then, ANN will predict the output value.

The output generated from this prediction is compared with
the pollutant limit. If the value exceeds the limit, GA gener-

ates new input parameters from the GA operator, i.e. mutation

and crossover. These steps are repeateduntil the optimal in-
put values of fuel are found. This is an iterative process at

the end of which the GA arrives at the optimum set of fuel
parameters which produce emission within acceptable limit.
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Table 2

Regression analysis between predicted and actual output by neural network

r-value

From the coefrcient conelation analysis (Bdrcs' Hayes,

& Strb€ll, 1997; Noblc & Meylrcw, 197; rftrc, Vallc, & Qito"
l99t) and sensitivity analysis by neural network (SANI{)

@icofii & Zio, 1999; Stm, 1999), majorandminor inputvari-
ables to a particular emission released for ANN simulation is

determined. By using these analyses, out of I 5 input parame-

ters selected based on the contributing factors to palm oil mill
emission, major input variables for CO are four (steam ca-

pacity, steam temperature, fibre flow rate and shell flowrate).

The maj or input variables for NOr are also four with the same

major input variables as CO except steam temperature is re-
placed by fumace combustion. Finally forparticulate matters

@M), the major input variables are feed water, fumace com-

bustion, boiler outlet, water level, fibre flow rate and shell

flow rate. In general, major input variables have great impact

on a particular output variable whereas minor input variables
give small impact on a particular output variable.

4. Result and discussion

The data above the permissible limits of the pollutants re-

leased couldbe determined by referring to the standardization

of exhaust separation in Table l. Each pollutant has its own

allowable limit according to DOE ofMalaysia. However, for
CO and NOc, the limit of 870 ppm and 250 ppm as laid down

by Ministry of Industry (MI) of USA, is taken for this study.

Fig. I shows the graph of CO produced and the fuel flow
rate during 120 data collection. The broken line indicates the

lltrebrr of rhte

l-co=;rrir l

(a) bebre oplknlzation

Xor*Tof ddr
F:---.h,,trl

(b) *tqttmlzrdon

Fig. l Optimized conditions of palm oil mill showing the control of CO
emission.

Training
Validation
Testing

A program written in C++ is modified to suit the problem for

GA in emission controlling in which the objective function

used is the concentration of the emission.
Before GAANN is applied, GA parameters such as pop-

ulation size, mutation rate etc. need to be determined. As

the parameter settings are right, so do the effects ofcrossover
rates, population size and mutation rates on the GAANN per-

formance. The first study is carried out for different crossover

rate (i.e. Iyo, soh, lD%o and 100%) while other parameters are

kept constant. Similar studies were also carried out to find
the mutation rate and population size. From this parametric

study, it is found that the best rate for crossover and mutation

is 88.67% and 4.33%o, respectively. It is also found that the

best number of size forpopulation is 100.

3.' Experimental procedure and data analysis

In this study, gas analyzer is used for collecting CO,

NOz and SOz, and isokinetic source sampling equipment

of method 5 is used for collecting PM. There are a variety

amount of data collected by other researchers to model boiler
emission. Yue, Valle, and Qin (199E) gathered about 350 sets

of data and Fisher-Rosemount (1997) collected the data in

each minute for 2 and 4 weeks for boiler emission model-

ing. However, for current study, by considering the equip-

ment provided and the operation time for palm oil mill, the

data collected were 120 sets for the first mill and 65 sets for

the second mill in 15 min interval time for several days. The

data taken are then divided into two major parts: simulation
(training and validation) and testing. The division of the data

follows the rule set by Environmental Protective Agency of
United States of America (EPAUSA), which requires 20%o of
the data must be taken for testing and the rest are for the train-
ing and validation. The training of ANN is needed to update

the weights according to new data sets. The testing segment is

then used to evaluate the methods using unseen data (Demuth

& Bcale, 2ff0; Martines & Colho, 20fl); Freeman &
Skepura" t991. Tabl€ 2 shows the regression analysis be-

tween predicted data and actual data. During haining and

validation, the regression 'r' value of 1 is obtained which
means that the predicted and actual points coincide. Dur-
ing testing, the predicted and actual values almost coincide

in which the regression 'r' valtre of almost I is obtained. It
shows that the prediction by ANN is almost accurate, and the

result is reliable.

I
I
0.9983

I
I
0.9991

I
I
0.9994

I
I
0.9701

Ett
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Fig. 2. Optimized conditions of palm oil mill showing the control of NOo

emission.

allowable limit of 870 ppm. Many points of CO released are

over the permitted value as shown in Fig. l(a). As can be

seen from the graph, these 30 over limit points need to be

within the allowable limit, and the processes of releasing CO

needs to be optimized. Figs. 2(a) and 3(a) show the models

for NOs and PM output, respectively, with the broken lines

represent the allowable limit. Those figures show l2 points

for NOc and I I points for PM model are above the allowable

limit. There is no overlimit for SOz emission' Hence, only
three pollutants are used for the optimization process with
GAANN for that particular mill.

Single major inputvariables ofANN models ofthose three

pollutant models are employed and linked with GA to find
the optimal configuration that emits allowable emission. The

output predicted by ANN is based on the new input values

given by GA. Table 3 shows the optimization results of CO

emission from the over limit input variables. Four major input
variables (steam capacity, steam temperature, fibre flow rate

and shell flow rate), which contribute to the CO emission,

are considered for optimization. All 30 set of data which are

beyond the allowable limit are used in the optimization so

that the generated CO is lower than 870 ppm. The values in

bracket represent the original values before the optimization.

The percentage of reduction between actual and GAANN
results are illustrated in which the maximum percentage re-

duction is 64.36Yo at data point 67. With fibre flowrate of
l474.ll kg/h and shell flowrate of 532.13 kg/h, steam capac-

ity of 15.10 tonne/h and steam temperature of 286.01 oC, the

CO released is 868.90 ppm, which is 19.10% reduction from

A.L. Ahmad et al. / Computers and Chemical Engineering 28 (2004) 2709-2715

f
E

E
t
Ia

T

E
d-

T
E

to
t
o.

E
&
a,e
=I
E
o-

- r .linit

(a) bcforaopffizatiott

-Pl, 

- - .[ml

(b) after optimlzation

Fig. 3. Optimized conditions of palm oil mill showing the control of PM

emission.

the original data of 1074 ppm. Other 29 points are optimized

accordingly with constant power load and the results are pre-

sented in Table 3. Fig. l(b) shows the optimized conditions

of the emission released. The optimized points are clearly

below the allowable limit.
Similar procedure is carried out to NOz and PM. Table 4

shows the optimization results ofNOc emission from the over

limit input variables. Four major input variables (steam pres-

sure, furnace combustion, fibre flowrate and shell flowrate),

which contribute to the NOc emission, are considered for

optimization. The values in bracket represent the original

values before the optimization. The percentage of reduc-

tion between actual and GAANN results are illustrated in
which the maximum percentage reduction is 55.55% at data

point 86. With the same power load, theNOa released is norv

within the allowable limit of 250 ppm. With fibre flowrate of
l905.l2kglh and shell flowrate of 660.33kg/h, steam pres-

sure of l9.30kg/cm2 and fumace combustion of 0.30mm/h,

the NOs released is 249.56 ppm, which is 2.89Yo reduction

from the original data of 257 ppm' All other points are op-

timized accordingly with constant power load and the re-

sults are presented in Tabh 4. Fig. 2(b) shows the optimized

condition ofNOr. Tablc 5 shows the optimization results of
PM potlutant from the over limit input variables of I I data.

Six major input variables (feed water, furnace combustion,

boiler outlet, water level, fibre flowrate and stearn temper-

ature), which contribute to the PM released, are considered

Xunlrrdd- l{rn$.rof ttr

llunbor ol d*
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Table 3

Data number Input parameters generated by GANN CO output

Actual GANN Reduction (%)

Gpm) (ppm)
Steam capacity
(tonne/h)

Steam
temperature (oC)

Fibre flowrate
(kc/h)

Shell flowrate

Cc/h)

1

l0
74

20

JJ

36

38
4l
5l
))
62

64

67

68

75
/o
77

78

87

93

96

t02
103

108

110

113

114

ll5
lt7
ll8

rs.20 (15.1)
14.22 (14.s)
r5.ol (14.2)

14.s3 05.2)
rs.s2 (14.6)

14.51 (14.1)

14.02 (14.3)

15.23 (14.5)

ts.22 (r5.2)
14.s2 (14)

14.s0 (14.2)

ls.s3 (13.4)

1s.82 (1s.7)

15.52 (14.1)
15.s3 (ls.l)
r5.s7 (14.s)
rs.26 (r4.s)
r4.5s (14.3)

14.48 (r4.4)
rs.40 (r4.2)
1s.03 (14)

15.s2 (14.s)

ls.r7 (14.1)

15.11 (14.6)
ls.s2 (r4.2)
1s.03 (14.1)

14.s0 (14.1)
ls.s3 (1s.2)

14.87 (r5.r)
1s.36 (14.9)

286.01 (304)

326.23 Q31)
311.19 (327)

343.05 (3s4)

306.03 (346)

339.42 (334)

320.2r (369)

323.sr Q43)
383.44 (383)

326.33 (366)
3s1.02 (363)

3rs.4s (376>

2s7.33 Q48)
333.13 (383)

342.1r (382)

266.61 Q47)
290.88 Q37)
34r.s4 (343)

248.42 (348)
279.02 (328)
299.43 (364)

303.63 (32s)
303.1s (3s2)

333.35 (341)

247.63 (270)

304.s3 (334)
3rr.26 (342)
313.66 (333)

310.s6 (32s)

311.4s (353)

s32.rt Q2O)
s75.89 (sl9)
M6.88 (s76)

453.09 (1008)

420.16 (s40)
737.23 (1980)

133.43 (rs48)
s44.20 (972)
s76.33 (s76)
4s6.22 (les)
62r.rr (720)
40s.20 (540)
360.80 (360)
'724.28 (864)
604.06 Q6e)
735.r9 (936)

s24.33 (s16)
712.36 (828)

412.89 (216)
4rs.36 (9s2)
623.3r (720)
722.36 (900)
42s.72 (439)
440.56 (s40)
303.57 (828)
49952 (468)

s20.36 Q20)
450.66 (366)

452.87 Q32)
s43.62Q20)

868.9

869.1 r
869.8

868.98

869.15

868.88

868.9

869.4s

869.05

868.98

869.16

869.5

869.31

869.89
869.02

868.99

869.s6

867.98

869.72

868.9
869.25

869.97

869.t7
869.45
868.76

869.06

867.9

869.24

869.94

869.51

19.097

7.738
21.851

1.364
33.194
t4;732
38.288

13.6s9
42.179
40.440

49.202
63.574

64.387

47.565
32.47',|

6r.169
43.388

8.053

51.112
s8.937

s2.055
39.459
3 1.507

22.'.?16

51.001
42.900
37.200
rr.t2l
20.5s3
3 1.696

l474.ll (1s84)
1874.95 (19839)
14s0.06 (r800)
130s.22 (1008)

t1'19.42 (720)
16s4.44 (1980)

1,r4s.09 (rs48)
1s44.03 (1440)

r4rs.23 (1404)

1243.02 (1830)

16s0.32 (1s48)

rr31.23 (1404)

rr14.02 (1260)

1606.42 (900)

r2r4.34 (1098)
rrr9.s2 (s76)
1205.46 (rsr2)
t72't.r1 (1620)

1422.ss (r476)
rs87.33 (r756)
15ss.23 (1440)

l4l r.3s (1s12)

1422.28 (r7s7)
1601.23 (l8oo)
r022.55 (1s48)

r389.06 (1692)

rs23.43 (1620)

r3rs.20 (1464)

1666.54 (1281)

13s5.77 (1s84)

1074
942

I 113

881

130r

1019

1408

I 007

1503

1459

tTtl
2387

2441
1659

1287
2273

I 536
944

1779

2lt6
I 813

1437

1269

1125

1773
1522
1382

9'78

1095

t273

Table 4

GANN optimization of NO" emission

Datanumber InputParametersgeneratedbyGANN NO, output

Steam pressure

(kg/cm2)
Fumace combustion

(mm/lt)
Fibre flowrate
(kc/h)

Shell flowrate
(kc/h)

Actual
(ppm)

GANN (ppm) Reduction (7o)

42
48

69

70

IJ

85

86
88

93

95

103

109

19.30 (20.1)

21.r5 (20.s)
20.06 (20.r)
18.44 (2o.2)

19.43 (20.r)
r7 .s4 (20.4)
r7.26 (20.3)
19.s6 (20.3)
r7.r2 (r7.s)
lE.s3 (20.3)

17.s6 (18)
20.06 Q0.2)

0.30 (0.2)
0.ss (0.25)

0.2s (0.2)
o.22 (0.2s)
0.2s (0.2)

0.33 (0.4)
0.41 (0.3)
0.52 (0.3)
0.50 (0.,{4)

0.42 (0.3)

0.52 (0.38)

0.34 (0.25)

r905.r2 Q229)
r6sr.1l (1898)

r13l.s3 (1814)

1720.33 (lss6))
r4s6.87 (1670)

rs36.42 (1784)
1444.23 (1327)
1660.s8 (1804)
rs4l.4s (r7s7)
1404.s6 (zs'.t8)

1422.76 (r7s7)
121 1.43 (1800)

660.33 (882)
824.07 (1056)
3s6.02 (936)
690.43 (930)
52s.18 (828)
530.42 (1018)
s26.34 (637)
333.56 (80r)
s09.36 (952)
527.30 (856)

42s.t7 (439)
35s.43 (540)

257
264
324
435

328
547

562
405
276

392
382
280

249.56

248.9

249.1r
248.87

249.56

249.69

249.39
249.89
249.55

249.09

248.49

249.68

2.89
5.72

23.11

42.',?9

23.91

54.35

5s.62
38.30

9.s8
36.46
34.95

10.83

for optimization. The values in bracket represent the origi-
nal values before the optimization. The percentage ofreduc-

tion between actual and GAANN results are illustrated in
which the maximum percentage reduction is 13.48/o at data

point 6l . For example, at that data point with the same power

load, the PM released is now within the allowable limit of
400 mgA{ m3 . With feed water of 13.9 tonnelt, fumace com-

bustion of 0.35 mm/h, boiler outlet of 0.65 mm/h, water level

of 51.36%o, fibre flovr,rate of 1668.41 kgih and shell flowrate
of 558.23kglh, the PM released is 397.97mgA'[m3, which
is 13.48% reduction from the original data of 460mgA.lm3.
Other points are optimized accordingly with constant power

load and the results are presented in TSlc 5. The conditions

of the release ofPM after optimization are shown in F[. 3(b).
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Table 5

GANN optimization of PM pollutant
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Data no. Input parameters generated by GANN PM output

Feed water
(tonne/h)

Fumace
combustion (mm/h)

Boiler outlet
(rnm/h)

Water level
(%)

Fibre flowrate Shell flowrate
(kc/h) (kclh)

Actual GANN Reduction
(ppm) (ppm) (%)

22

40

6l
'12

75

88

93

ll0
lll
t19

rs.42 (rs.2)
rs.2r (r4.e)
13.19 (9.9)

14.51 (14)
11.s2 (10.s)
lo.5o (9.8)
r4.s8 (r3.8)
ls.5 (13)
r 1.28 (10.4)
12.5r (r3.3)
e.95 (10.1)

0.34 (0.2s)
0.35 (0.2s)
0.3s (0.,{4)

0.40 (0.44)
0.44 (0.42)
0.3s (0.4)
0.23 (0.3)
0.sl (0.44)

0.36 (0.4)
0.37 (0.4)
0.33 (0.4)

0.7s (0.8)

0.7s (0.6)

o.70 (0.65)

0.81 (0.9)

0.72 (0.6s)
0.71 (0.65)

0.51 (0.e)
0.62 (0.s)
0.62 (0.7)
0.se (0.e)
0.6e (0.65)

s 1.03 (49. l)
49.12 (s2.8)

51.36 (49)

49.00 (49.r)
48.23 (48)
s0.22 (s1.2)

s1.36 (49.1)
49.s1 (s0)

51.36 (49.1)

.s2.0 (49.2)
s0.s2 (49.7)

1843.22 (1965)

1806.21 (1807)

1668.4r (1720)

1732.09 (r4u)
140s.36 (1s37)

l 10r.33 (1098)

1660.87 (1804)

1541.01 (17s7)

1441.52 (rs48)
r4s0.0l (1391)

rss6.23 (1647)

854.10 (960)

733.26 (1062)

ss8.23 (732)
740.07 (6s9)
405.66 (695)
3s9.23 (769)
333.59 (901)
sog.l2 (9s2)
43s.89 (828)

. 50s.01 (732)
433.16 (58s.6)

395.89 1.03

396.54 0.86
397 .97 13.48

397.91 9.57

396.56 I 1.88

398.97 11.34

t99.45 7.r0
398.8 1l.38
398.39 5.15

397;70 5.48

397.87 2.96

400

400

460

440

450

450

430

450

420

420
410

Eg

t
oo

Similarprocedure is carried out to a different mill. Fig. 4(a)
shows the release of CO during 65 data collection. From the

graph, many points of CO released are beyond the allowable
limit as indicated by the broken lines. These 17 points, which
are beyond the allowable limit, are required to be within the

allowable limit and the processes of releasing it need to be

optimized. Fig. 5 shows the output of PM in which two points

are above the allowable limit. All single major input variables
of ANN models of those two pollutant models are employed
and linked with GA to find the optimal configuration that

30 to
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(a) before opln*zalbn
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r . .llmll

(b) erop|i|lrzdor

Fig. 4. Optimized conditions of palm oil mill showing the conhol of CO

emission for a different mill.

emits allowable emission. Figs.4(b) and 5@) show the output

of CO and PM after the implementation of the optimization
process. The optimal points are clearly within the allowable

limits for both emission.

In the above GAANN process, it is worth to note that the

data presented in Tables 3-5 are only the data which were

beyond the permissible limit of particular emission. The op-

timal points obtained in all of the pollutants are within the

limit of minimum and maximum values used in the training
phase for all the data sets; for instance, for fumace combus-
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Fig. 5. Optimized conditions of palm oil mill showing the conhol of PM

emission for a different mill'
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tion, the minimum value is 0.2 and the maximum value is
0.6.

From the above GAANN process, all optimum input pa-
rameters can be included in new optimized data as a guided
manual for boilerman or operator at the palm oil mill to
operate the steam plant with minimum pollutant released.
A table of the optimum input values can be tabulated and
listed next to the operator. The smoke production from the
stack gas will be maintained and controlled under the permit-
ted level while satisfuing the power load capacity required.
As the input variables can be focused on certain pollutant
emission, so this GAANN procedure can be applied in the
case where only certain pollutant is mainly considered. In
Malaysia, as black smoke which consists of particularly PM
is put under much consideration, GAANN can be used to
only consider the PM released. To ensure the black smoke,
which is consisting of PM is controlled under DOE limit,
an optimized value for input parameters combinations can
be obtained. In summary, the combination of ANN and GA
has achieved the objective of the study which is to find the
optimal operating condition in boiler emission processes.

5. Conclusion

The optimization of operating condition in palm oil mill
is successfully carried out with GAANN. This optimal op-
erating condition will ensure the emission released is under
the pollutant limit for both mills. Any data can be analyzed
and predicted by ANN, and the operating condition can be
optimized by GAANN. The CO, NO, and PM optimized
input parameters are useful as a guideline for mill operator
in order to conhol the pollutants released from boiler. The
tool developed from this study can be utilized to predict and
control any pollution.
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