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MODEL KECERDIKAN BERKOMPUTER HIBRID DENGAN 
PENGEKSTRAKAN PERATURAN SIMBOLIK BAGI PENGELASAN 

CORAK 
ABSTRAK 

Tesis ini adalah berkenaan dengan pembangunan model kecerdikan berkomputer 

hibrid bagi menangani masalah pengelasan corak.  Penyelidikan tertumpu kepada 

hibridisasi model rangkaian neural buatan dan algoritma genetik bagi pembelajaran 

dan pengestrakan peraturan berdasarkan data.  Di samping itu, satu sistem pengelas 

pelbagai ejen yang baru telah digubal untuk menggabungkan model kecerdikan 

berkomputer hibrid menjadi satu kerangka kerja sepunya bagi pengelasan corak. 

Rangkaian Fuzi Min-Max (FMM) digunakan sebagai tulang belakang bagi 

membangunkan model kecerdikan berkomputer hibrid dalam penyelidikan ini.  Dua 

pengubahsuaian baru telah dicadangkan untuk memperbaiki prestasi FMM dan 

mengekstrak peraturan simbolik jika-maka daripada pangkalan pengetahuan.  

Pengubahsuian pertama bertujuan mengurangkan bilangan kotak-hiper dalam FMM 

dan meningkatkan prestasinya.  Pengubahsuaian kedua menggabungkan algoritma 

genetik untuk mengekstrak peraturan jika-maka kabur daripada rangkaian FMM. 

Untuk memperbaiki ketegapan dan prestasi rangkaian FMM bagi pengelasan corak, 

satu sistem pengelas pelbagai ejen yang baru, yangdibangunkan berdasarkan model 

alasan kepercayaan-rundingan-komunikasi daripada sistem pelbagai ejen, telah 

diperkenalkan.  Satu kaedah pengukuran kepercayaan baru, berdasarkan teori 

keputusan Bayesian telah diformulasi.  Prestasi sistem pengelas pelbagai ejen telah 

dinilai dengan set data bandingan serta masalah industri dan perubatan yang sebenar, 

dan kaedah bootstrap digunakan untuk menilai prestasi sistem secara statistik.  

Keputusan yang diperolehi membuktikan keberkesanan sistem pengelas pelbagai 

ejen dalam menyelesaikan pengelasan corak, dengan peraturan jika-maka yang 

senang difahami dalam menerangkan ramalannya kepada pengguna. 
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HYBRID COMPUTATIONAL INTELLIGENCE MODELS WITH 
SYMBOLIC RULE EXTRACTION FOR PATTERN CLASSIFICATION 

 

ABSTRACT 

This thesis is concerned with the development of hybrid Computational Intelligence 

(CI) models for tackling pattern classification problems.  The research focuses on 

hybridization of the Artificial Neural Network (ANN) and Genetic Algorithm (GA) 

models for data-based learning and rule extraction.  In addition, a novel Multi-Agent 

Classifier System (MACS) is devised to combine the hybrid CI models into a 

common framework for pattern classification. 

The Fuzzy Min-Max (FMM) network is employed as the backbone for developing 

the hybrid CI models in this research.  Two novel modifications are proposed to 

improve the performance of FMM and to extract symbolic if-then rules from its 

knowledge base.  The first modification aims to reduce the number of hyperboxes 

formed in FMM and to enhance its performance.  The second modification 

incorporates the GA to extract fuzzy if-then rules from FMM-based networks. 

To further improve the robustness and performance of FMM-based networks for 

pattern classification, a new MACS, developed based on the Trust-Negotiation-

Communication (TNC) reasoning model of multi-agent systems, is introduced.  A 

novel trust measurement method based on the Bayesian decision theory is 

formulated.  The performances of the MACS are evaluated using benchmark as well 

as real industrial and medical problems, and the bootstrap method is used to quantify 

the performances statistically.  The results ascertain the effectiveness of employing 

the MACS model for undertaking pattern classification tasks, along with 

comprehensible if-then rules for explaining their predictions to domain users. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Pattern recognition is an activity that humans carry out daily without much conscious 

effort.  Humans receive patterns via sensing organs, whereby the patterns acquired is 

processed by the brain to form useful information, and subsequently a decision for 

action to be taken for the patterns is made (Duda, Hart & Strok, 2002).  However, 

this task is not a trivial one for computerized systems.  To tackle pattern recognition 

problems, it is necessary for computerized systems to have techniques and 

algorithms that are able to process and recognize patterns from data and/or 

information supplied to the systems.  Indeed, research in pattern recognition has 

inspired researchers from many disciplines owing to its cross-fertilization nature, 

which include engineering, computer science, physics, mathematics, and cognitive 

science. 

 

In general, the task  of pattern recognition can be divided into two stages,  as 

shown in Figure 1.1 (Fu, 1968; Tou & Gonzalez, 1974; Young & Calvert, 1974; 

Duda et al., 2002): 

(i) feature extraction –  finding and extracting significant features from an input 

pattern, and then transforming the input features by using some arbitrary function 

so as to provide informative measurements for the input pattern; 

(ii) classification –  designing a procedure for categorising the measurements taken 

from the extracted features, and then assigning the input pattern to one of the 

target classes by applying some decision rule  
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Figure 1.1 A pattern recognition system comprises a feature extractor and a pattern 
classifier 

 

This research is focused on the second stage of the recognition process, i.e., 

pattern classification.  Over the years, a number of approaches have been developed 

for pattern classification.  Perhaps statistical approaches are among the early methods 

used for pattern classification.  The classical method of linear discrimination 

proposed by Fisher (1936) and Roa (1948) is one of the earliest statistical approaches 

for pattern classification.  Another popular statistical approach for pattern 

classification is the Bayesian decision approach (Devijver & Kittler, 1982; Duda et 

al., 2002).  However, statistical approaches are inefficient in handling contextual or 

structural information in patterns (Pal & Pal, 2002).  To solve this problem, 

researchers have turned to the theory of formal languages (Hopcroft & Ullman, 

1979), which led to the use of syntactic approaches for pattern classification.  In 

syntactic approaches, patterns that are classified are not represented as arrays of 

numbers.  Rather, they are described in terms of very simple sub-elements, called 

primitives, and of certain rules called syntactical rules.  These approaches work fine 

for idealized patterns.  But, they are inefficient in tackling noisy, distorted patterns 

(Pal & Pal, 2002). 

 

Another approach for pattern classification is classification trees (Breiman, 

Friedman, Stone & Olshen, 1984).  Classification trees are symbolic systems that 

assign symbolic decisions to examples, and are built upon attributes of the patterns 
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that are symbolic in nature, or at least discretized if they are not symbolic to begin 

with.  The tree classifiers, however, face the same inefficiency problem as syntactic 

approaches in dealing with noisy, distorted patterns (Pal & Pal, 2002). 

 

Another useful approach to pattern classification is based on the Computational 

Intelligence (CI) models.  As pointed out in Marks (1993), Bezdek (1994), Fogel 

(1995), Poole, Mackworth & Goebel (1998), Pedrycz (1999), the main CI models 

comprise three paradigms, i.e., Artificial Neural Networks (ANNs), Fuzzy Systems 

(FSs), and Evolutionary Algorithms (EAs).  In addition to ANNs, FSs, and EAs, 

other researchers have included intelligent agents as one of the CI paradigms (Poole 

et al., 1998, Chen, 2000).  These paradigms are indeed powerful methods for pattern 

classification, as evidenced by the many successful applications (Ishibuchi, 

Yamamoto & Nakashima, 2005; Gonçalves, Vellasco, Pacheco & de-Souza, 2006; 

Nandedkar & Biswas, 2007; Hu, 2008). 

 

Recent advancement has resulted in the development of hybrid CI models.  

While each CI paradigm has its own advantages and disadvantages, hybrid CI 

paradigms attempt to combine the advantages of each CI paradigm and, at the same 

time, to avoid its shortcomings.  Motivated by this line of work, the focus of this 

research is on the development of hybrid CI models for pattern classification and rule 

extraction.  The hybrid models are based on the combination of ANNs, FSs, EAs, 

and Multi-Agent Systems (MAS), with the aim to harness the advantages of each CI 

paradigm and to form an effective and efficient pattern classification system.  In 

particular, the Fuzzy Min-Max (FMM) neural network, which is a hybrid neural-

fuzzy model, is adopted as the backbone of this research.  Novel modifications are 
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introduced and incorporated into FMM in order to improve its robustness.  To allow 

FMM to explain its predictions, a Genetic Algorithm (GA)-based rule extractor is 

introduced to extract fuzzy if-then rules from FMM.  The extracted rules have “don’t 

care” antecedents, which make the rules compact and easy to comprehend.  On the 

other hand, researchers have established a classifier ensemble results in improved 

performance in pattern classification.  As such, the MAS framework is adopted as a 

platform for combining a number of FMM-based networks to form a Multi-Agent 

Classifier System (MACS) for tackling pattern classification tasks. 

 

In the following sections, an introduction to CI, which includes its definition, is 

first given.  The motivations for developing hybrid CI systems and for combining a 

number of hybrid CI classifiers in an MACS framework are presented.  The research 

objectives, scope, and approach are then explained.  An overview of the organization 

of this thesis is also presented. 

 

 

1.2 Computational Intelligence 

The way humans think, socialise, and reason has inspired researchers to develop CI 

systems that are capable of imitating such behaviors.  The applications of CI systems 

can also be found in many areas including medical (Munakata, 1994), financial (Su 

& Chang, 1998), industrial (West & West, 2000), as well as management (Meesad & 

Yen, 2003). 
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One of the earliest definitions of CI was provided by Bezdek (1994), i.e., 

“a system is computationally intelligent when it deals only with 

numerical (low-level) data, has a pattern recognition component, and 

does not use knowledge in the artificial intelligence (AI) sense”. 

A few other definitions of CI are also provided by other researchers.  Fogel (1995) 

defined CI as 

“these technologies of neural, fuzzy, and evolutionary systems were 

brought together under the rubric of computational intelligence, a 

relatively new trend offered to generally describe methods of 

computation that can be used to adapt solutions to new problems and 

do not rely on explicit human knowledge”. 

Poole, Mackworth and Goebel (1998) extended the CI component systems to include  

“the study of the design of intelligent agents” and elaborated the 

definition as “the central scientific goal of computational intelligence is 

to understand the principles that make intelligent behavior possible, in 

natural or artificial systems”. 

 

In addition, hybrid CI systems, which are formed by integrating the individual 

CI component systems of neural, fuzzy, and evolutionary models, have been 

established.  To understand how hybrid CI systems operate, an introduction to each 

CI model, i.e., ANNs, FSs, and EAs, is first provided, as follows. 

 

Research in ANNs stems from the operation of the nervous system in the brain.  

McCulloch and Pitts (McCulloch & Pitts, 1943, Pitts & McCulloch, 1947) were the 
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pioneers who initiated mathematical modeling of neurons.  To date, some of the 

popular ANNs models include the Multi-Layer Perceptron (MLP) networks 

(Rumelhart & Zipser, 1986; Bishop, 1995; Reed & Marks, 1998; Bortoletti, Di 

Fiore, Fanelli & Zellini, 2003), Hopfield network (Hopfield, 1982, 1984; Wang, 

Tang & Cao, 2004), Radial Basis Function (RBF) network (Broomhead & Lowe, 

1988; Moody & Darken, 1989; Oyang, Hwang, Ou, Chen & Chen, 2005).   

 

FSs are based on the theory of Fuzzy Logic (FL) introduced by Zadeh (1965).  

Fuzzy set theory (Zadeh, 1965) presents a methodology for representing and 

computing uncertain and imprecise data and/or information.  It provides an inference 

mechanism using a set of if-then rules for reasoning.  Examples of FSs used for 

pattern classification include Bellman, Kalaba and Zadeh (1966), Backer (1978), and 

Kamat (2004). 

 

EAs are introduced as solutions for problems that require search and 

optimization.  They are adaptive, robust algorithms based on the principle of 

evolution, heredity, and natural selection (Holland, 1986, Koza, 1992).  They are 

population-based algorithms for which any communication and interaction are 

carried out within the population.  There are five major branches of EAs, viz., 

Genetic Algorithms (GA) (Holland, 1962), Evolutionary Algorithms (EA) (Fogel, 

Owens & Walsh, 1966), Evolutionary Strategies (ES) (Rechenberg, 1965; Schwefel, 

1981; Rechenberg, 1994), Genetic Programming (GP) (Koza, 1992), and Learning 

Classifier Systems (LCS) (Holland, 1986).  These EA models are introduced in 

Chapter 2. 
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1.3 Problems and Motivations 

ANNs are popular approaches for tackling pattern classification problems.  They 

have the ability to handle non-linear as well as noisy data collected from real 

environments.  However, popular ANN models, such as MLP and RBF, suffer from 

the “catastrophic forgetting” problem when dealing with new information in an 

incremental manner (Polikar, Upda, Upda & Honavar, 2000, 2001).  This occurs 

when the ANN “forgets” previously acquired information while attempting to learn 

new information incrementally.  The “catastrophic forgetting” problem is also known 

as the stability-plasticity dilemma (Carpenter & Grossberg, 1987a, 1988).  The 

dilemma aims to undertake a number of issues associated with learning systems.  The 

fundamental questions posed by the stability-plasticity dilemma include “how can a 

learning system remain plastic or adaptive in response to significant events, and yet 

remain stable in response to irrelevant events?” and “how can a system adapt to new 

information without corrupting or forgetting previously learned information?” 

(Carpenter & Grossberg, 1987a, 1988).  This is a crucial issue when the ANN 

operates in real environments, in which the number of data samples increases with 

time, and the ANN has to learn these samples in an autonomous and incremental 

manner. 

 

In response to the stability-plasticity dilemma, Carpenter, Grossberg, and co-

workers proposed the family of Adaptive Resonance Theory (ART) neural networks.  

There are a variety of ART models for unsupervised as well as supervised learning.  

Unsupervised ART models include ART1 (Carpenter & Grossberg, 1987a), ART2 

(Carpenter & Grossberg, 1987b), ART3 (Carpenter & Grossberg, 1990), Fuzzy ART 

(Carpenter, Grossberg & Rosen, 1991), and supervised ART models include 
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ARTMAP (Carpenter, Grossberg & Reynolds, 1991), Fuzzy ARTMAP (Carpenter, 

Grossberg, Markuzon, Reynolds & Rosen, 1992), and ART-EMAP (Carpenter & 

Ross, 1995).  The ART networks are examples of incremental learning systems 

which self-organize and self-stabilize in response to an arbitrary sequence of data 

samples in stationary (time-invariant) and non-stationary (time-varying) 

environments.  They overcome the stability-plasticity dilemma by adapting 

knowledge (coded as prototypes) in the network structure only when a new input 

sample is sufficiently similar (measured against a user-defined threshold) to one of 

its existing prototypes.  The input sample and the stored prototype are said to 

“resonate” when they are sufficiently similar.  When an input sample is not 

sufficiently similar to any existing prototype, a new prototype is created with the 

input sample coded as the new prototype.   

 

Among the variants of ART networks, Fuzzy ARTMAP (FAM) is one of  the 

most widely investigated and used models for various applications, as reported in 

Ten-Ho & Von-Wun (1997); Lim & Harrison (2003); Tan & Lim (2004), and Vigdor 

& Lerner (2006).  Although FAM has a number of appealing properties, such as the 

ability to tackle the stability-plasticity dilemma, the ability to deal with analog as 

well as binary input patterns, it has a number of limitations too, as pointed out by 

Simpson (1992).  One of the important limitations highlighted by Simpson (1992) is 

that FAM allows overlapping of hyperboxes (prototypes) in its structure. This means 

that one input sample can have full membership in more than one prototype.  This 

situation significantly weakens the notion of fuzzy sets.  As such, the use of non-

overlapping hyperboxes is more appropriate, which guarantees that an input sample 
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has full membership in only one hyperbox, unless it is a point along the boundary 

between two abutting hyperboxes (Simpson, 1992). 

 

To overcome the limitations in FAM, Simpson proposed two FMM ANNs; one 

for pattern classification (Simpson, 1992) and another for pattern clustering 

(Simpson, 1993).  The pattern classification FMM network is a supervised learning 

model which utilizes FL and ANN as the fundamental computing elements.  On the 

other hand, the pattern clustering FMM network is an unsupervised learning model 

which creates and refines pattern clusters in a fashion similar to Fuzzy ART.  In this 

thesis, the FMM network refers to the pattern classification FMM model introduced 

by Simpson (1992). 

 

As explained in Simpson (1992), the FMM network possesses a number of 

important and useful properties for handling pattern classification problems: 

• Online Learning: FMM learns and adapts new classes and refines existing 

classes quickly and without forgetting old class information.  This property is 

important to tackle the stability-plasticity dilemma. 

• Nonlinear Separability: FMM is able to build decision boundaries that separate 

classes of any shape and size. 

• Overlapping Classes: FMM creates decision boundaries to minimize the 

misclassification for all overlapping classes.  In other words, there is no overlap 

between hyperboxes of different classes. 

• Training Time: FMM needs only one pass to learn and refine its decision 

boundaries. 
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• Soft and Hard Decisions: FMM has the ability to produce either hard decisions 

(either 0 or 1) or soft decisions (describe the degree to which an input sample 

fits within a predicted output class). 

 

The above properties make FMM an attractive pattern classifier.  However, 

FMM is not free from limitations.  As the topology of a class usually is complex and 

is incompatible with the convex topology of hyperboxes, a smaller hyperbox size is 

needed to represent a particular output class (Bargiela, Pedrycz & Tanaka, 2003).  As 

such, the performance of FMM is affected by the expansion coefficient (or the 

hyperbox size).  A network with small hyperboxes performs better than one with 

larger hyperboxes.  However, small hyperboxes increase the network complexity.  

On the other hand, similar to any other incremental learning systems, the 

performance of FMM is affected by the sequence of the training samples (Nandedkar 

& Biswas, 2007).  Thus, it is worthwhile to investigate how to maintain, or even 

improve, the classification performance of FMM when large hyperboxes are formed 

in its structure, and how to mitigate the effect of training sample sequences in FMM 

learning. 

 

Another shortcoming of FMM, which is a limitation suffered by most ANNs, is 

the inability to explain its predictions.  That is why most ANNs (including FMM) are 

called “black-boxes” (Benitez, Castro & Requena, 1997, Kolman & Margaliot, 

2005).  To explain the predictions of ANNs, researchers have introduced a number of 

rule extraction techniques for ANNs.  According to Sato and Tsukimoto (2002), rule 

extraction methods can be grouped into three categories, i.e., the type of input 

variables (continuous or discrete), the type of extracted rules (production rule, n-of-m 
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rule or n-of-m tree), and the approach to rule searching (pedagogical or 

decompositional).   

 

Regardless of the rule extraction categories, there are two silent properties that 

a rule extraction method should have, i.e., prediction accuracy and rule 

comprehensibility (Taylor & Darrah, 2005).  In this aspect, rule comprehensibility 

faces a serious issue, i.e., the “curse of dimensionality” where the number of rules 

increases exponentially with the increase of the input features or dimensions (Nelles, 

Fischer & Muller, 1996, Mastsushita, Furuhashi & Tsutsui, 1998, Nii, Ogino, 

Sakabe, Sakagami & Takahshi, 2002, Xiuju & Lipo, 2002).  A number of solutions 

are  proposed for overcoming this problem.  One possible solution is to deploy a 

dimensionality reduction technique (Xiuju & Lipo, 2002) before network training 

i.e., the ANN is trained using a number of selected features only.  Another solution, 

proposed by Hasegawa, Horikawa and Furuhashi (1992) is to use a hierarchical 

approach in which sub-fuzzy models are constructed hierarchically, and the number 

of rules in each sub-model is made very small. 

 

On the other hand, researchers have proposed using EAs to select a compact 

rule sets to curb the “curse of dimensionality” problem (Nelles et al., 1996, Dorado, 

Rabunal, Rivero, Santos & Pazos, 2002).  However, one of the problems faced is the 

number of antecedents in the extracted rules normally is equal to the number of 

features.  Indeed, a large number of antecedents may not be appropriate in practice, 

as this complicates the comprehensibility of the rules.  In other words, for a rule 

extraction technique to be useful, only the important antecedents (features) should be 

retained in the extracted rules.  Therefore, it is important to investigate how to extract 
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a compact rule set from FMM that contains only a few important antecedents and 

that yields a high classification performance. 

 

In pattern classification, improved performance can be obtained by using an 

ensemble or committee of classifiers.  Most ensemble methods assume that the 

member classifiers are both diverse and accurate (Hashem, Schmeiser & Yih, 1994).  

These assumptions mean that each classifier has to make independent classification 

errors, so that the overall classification accuracy is improved when all the predictions 

are combined.  Indeed, both theoretical (Hansen, Liisberg & Salamon, 1992, Krogh 

& Vedelsby, 1995) and empirical (Hashem et al., 1994, Maclin & Shavlik, 1995) 

investigations have shown that a good ANN ensemble is one where the individual 

networks are both accurate and make errors on different parts of the input space. 

 

As mentioned earlier, intelligent agents are considered as one of the CI 

paradigms.  Multi-Agent Systems (MAS) are widely used in different applications, 

e.g. in decision support (Fazlollahi, Vahidov & Aliev, 2000), industrial steel 

processing (Gao, Zeng, Xu & Sun, 2003), robot navigation (Ambastha, Busquets, 

Màntaras & Sierra, 2005), and power systems (Baxevanos & Labridis, 2007).  In this 

thesis, MAS is investigated as a method to form an ensemble of FMM networks, 

whereby, each FMM is modelled as an agent, and the MAS framework combines all 

the FMM predictions, in an attempt to devise a classification system with high 

performances. 

 

In the domain of MASs, a number of reasoning models are available to describe 

the relations between agents.  These include the Belief, Desire, and Intention (BDI) 
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model proposed by Bratman (1987), and the decision ladder model proposed by 

Rasmussen, Pejtersen & Goodstein (1994).  In this thesis, the Trust, Negotiation, and 

Communication (TNC) model proposed by Haider, Tweedale, Urlings, and Jain 

(2006), and Tweedale and Cutler, (2006) is investigated for modelling an MAS.  In 

the TNC model, the core element is the trust measurement.  As trust is a subjective 

quantity, it is worthwhile to investigate methods for trust calculations, making it an 

objective quantity. 

 

 

1.4 Research Objectives, Scope, and Approach 

The main aim of this research is to design and develop hybrid CI systems that 

capitalise the advantages of each CI model (ANN, FS, and EA) and, at the same 

time, avoid their limitations.  Based on the rationale of classifier ensembles, the 

MAS methodology is used to devise a Multi-Agent Classifier System (MACS) that 

combines different classifiers into a unified framework.  The main thrust of work is 

geared towards devising FMM-based classifiers, incorporating the GA rule extractor 

into the resulting FMM classifiers for explaining the predictions, as well as 

integrating different FMM classifiers as an MACS model for tackling pattern 

classification tasks. 

 

The research objectives are as follows: 

(1) to enhance the existing FMM network with useful modifications for achieving 

improved classification performance with less complicated network  structures, 

(2) to develop a hybrid system that integrates the FMM and GA models for pattern 

classification and rule extraction,  
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(3) to devise an MACS model with a novel Bayesian trust measurement method for 

combining different FMM-based classifiers, 

(4) to evaluate the performances of the hybrid CI models by using benchmark 

problems, and to compare the results between the proposed models and those 

from other machine learning systems statistically by the bootstrap method, and 

(5) to assess the effectiveness of the resulting hybrid CI models to real industrial 

and medical applications. 

 

A step-by-step approach is taken in this research to achieve the above 

objectives.  First, the supervised FMM network is studied systematically.  As stated 

earlier, FMM performs better when its hyperbox size is smaller.  However, the trade-

off is that a small hyperbox size leads to a complex network structure with many 

hyperboxes.  Network complexity becomes an important issue when it comes to rule 

extraction.  Since each hyperbox is translated into a fuzzy if-then rule, a complex 

network with a lot of hyperboxes produces a large number of rules.  Therefore, 

useful modifications to FMM are first proposed to enhance the FMM performance in 

situations when large hyperboxes are formed in its structure. 

 

As explained earlier, one limitation of the existing rule extraction methods is 

that the number of antecedents of the extracted rules normally is equal to the number 

of input features.  A large number of antecedents in a rule makes it difficult for 

humans to comprehend the rule.  As such, the GA is used to inject “don’t care” 

antecedents into the extracted rules so that the number of antecedents is minimized.  

To further improve the robustness and performance, the MAS methodology is 
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adopted to devise an MACS model for combining an ensemble of FMM-based 

models for undertaking pattern classification tasks. 

 

During the course of achieving the objectives, extensive empirical studies are 

conducted using benchmark as well as real data sets to evaluate the hybrid CI 

systems developed in this research.  The benchmark data sets are taken from public 

domain repositories so that performance comparison with other classification 

methods can be conducted.  The bootstrap method is employed to quantify and 

compare the results statistically.  Besides, a number of real data sets from industrial 

and medical domains are used to demonstrate the applicability of the proposed 

hybrid CI systems in real environments. 

 

 

1.5 Research Methodology 

As mentioned in the previous section, the aim of this research is to device a CI-based 

hybrid system that is capable of tackling pattern classification problems with rule 

extraction facility.  In the process of designing the hybrid CI-based pattern 

classification system, the following steps are followed: 

1. Proposing two modified FMM networks that are able to achieve improved 

performances when large hyperboxes are formed.  The modification is 

implemented by using the Euclidian distance for determining the winning 

hyperbox in the prediction phase.  Two MFMM (modified FMM) networks 

are developed.  To determine the winning hyperbox for a given pattern, the 

first modified FMM network (MFMM1) uses both the membership function 

and the Euclidian distance to determine the winning hyperbox, while the 
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second (MFMM2) uses only the Euclidian distance.  The performances of 

both MFMM1 and MFMM2 are tested using benchmark data sets, and the 

results are compared with those published in the literature. 

2. Developing a two-stage pattern classification system by hybridizing FMM-

based networks and the GA.  In the first stage, the FMM-based networks are 

trained, and then pruned using a user defined threshold.  In the second stage, 

open hyperboxes are generated and fed to GA.  The GA aims to improve the 

performance of the FMM-based networks and to extract compact rule sets 

with “don’t care” antecedents.  Again, the two-stage pattern classification 

system is tested using benchmark data sets, and the results are compared with 

those published in the literature. 

3. Designing a Multi-Agent Classifier System (MACS) based on the Multi-

Agent System (MAS) framework for pattern classification.  First, an 

ensemble of FMM-based networks, each trained with different sequences of 

training samples to establish different knowledge bases for prediction, is 

established.  Then, the Trust-Negotiation-Communication (TNC) reasoning 

model is applied to form the MACS. 

4. Devising a novel trust measurement method for the TNC model. The 

Bayesian decision theorem is adopted for trust measurement in the TNC 

model.  Novel modifications are incorporated in the FMM-based networks 

such that the Bayesian trust measurement approach can be incorporated into 

the MACS effectively. 

5. Applying the MACS to tackling real-world pattern classification problems.  

The MACS is first tested using benchmark data sets, and the results are 

compared with those published in the literature.  Then, real industrial and 
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medical pattern classification problems are used. . The results are analyzed 

using the bootstrap method to quantify the performances of the MACS 

statistically. 

Figure 1.2 shows an overview of the research methodology adopted to achieve the 

objectives set out in this research. 

 

 

Figure 1.2 The methodology followed in this research 
 

 

1.6 Thesis Outline 

This thesis is organised in accordance with the objectives mentioned above.  After 

the introduction is introduced in Chapter 1, a general review on hybrid CI models is 

given in Chapter 2.  The review first covers the CI paradigms, then hybrid CI models 

for pattern classification.  In particular, hybrid CI models based on ANNs, FSs, and 
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GAs for patterns classification are introduced.  In addition, hybrid CI models for rule 

extraction are discussed and reviewed. 

 

The FMM network is introduced in Chapter 3.  First, a review on the latest 

innovations on FMM is presented, followed by a detailed description and a numerical 

example on the FMM learning operation.  The novel modifications proposed on the 

prediction stage of FMM are then introduced.  The modifications yielded two 

modified FMM networks which are MFMM1 and MFMM2.  Several simulations are 

conducted using benchmark classification tasks and the results are compared with 

those obtained from other approaches. 

 

Chapter 4 introduced two-stage pattern classification systems based on the 

networks introduced in Chapter 3.  The proposed classification systems, have a GA 

module embedded in stage-2, which aims to extract comprehensive fuzzy if-then 

rules with “don’t care” as part of their antecedents.  In addition, the GA module 

enhances the performance accuracy of the system.  Again, the performances of the 

proposed two-stage classifier systems are evaluated using some benchmark data sets 

and the results are compared with other classification algorithms. 

 

Chapter 5 introduces MASs and several models used for them.  The proposed 

MACS is formed using the TNC model, which is introduced in this chapter.  The 

core element of the TNC model is the trust calculation method which is then 

presented.  A number of modifications are incorporated in the FMM based networks 

so that the proposed trust calculation method can be applied on them.  The 



 19

effectiveness of the MACS is tested with some bench mark data sets, and the results 

are compared with those of other classification systems. 

 

To demonstrate the applicability of the MACS devised in Chapter 5, and the 

two-stage networks proposed in Chapter 4 as decision support tools, two real-world 

industrial case studies are considered in Chapter 6, and three real-world medical 

diagnosis comprising real patient records from several hospitals in the United 

Kingdom and Malaysia are considered in Chapter 7.  The results are compared with 

those obtained from different classification methods. 

 

Finally, conclusions are drawn and contributions of this research are set out in 

Chapter 8.  A number of areas to be pursued as further work are suggested at the end 

of this thesis. 
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CHAPTER 2 

LITERATURE REVIEW ON HYBRID COMPUTATIONAL 
INTELLIGENCE SYSTEMS 

 

2.1 Introduction 

As explained in Chapter 1, the main focus of this research is on the use of hybrid CI 

models for pattern classification and rule extraction.  As such, in the following 

section, the three main CI paradigms, namely ANNs, FSs, and EAs, are first 

introduced.  Then, hybrid CI systems that are developed for pattern classification as 

well as for rule extraction are surveyed.  A summary is presented at the end of this 

chapter. 

 

 

2.2 Computational Intelligence Paradigms 

ANNs are some kind of massively parallel computing systems with a large number 

of interconnected simple processors that are able to adapt themselves to data 

samples.  ANNs have several advantages that make them reliable tools for pattern 

classification.  ANNs are data driven self-adaptive methods in which they can adjust 

themselves to the data samples without any explicit specification of functional or 

distributional form for the underlying model (Zhang, 2000).  They are nonlinear 

models, which makes them flexible in modeling real-world complex relations 

(Zhang, 2000).  Some ANN models, e.g. MLP and RBF, are universal functional 

approximators (Hornik, 1991, Hornik, Stinchcombe and White, 1989), and have the 

ability to estimate the posterior probabilities (Richard and Lippmann, 1991). 
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On the other hand, FSs are designed to process ambiguous, imprecise 

information using fuzzy set theory.  The fuzziness feature  makes  FSs suitable for 

many real-world applications, whereby it is difficult to decide if something can be 

categorized exactly into a specific class or not.  Fuzzy set theory provides a 

mechanism for representing linguistic constructs such as “many”, “often”, “few”, and 

“sometimes”.  This allows the degree of which a data sample is present or absent to 

be measured. 

 

FSs generally comprise three components: a knowledge base that is formed by 

a group of fuzzy if-then rules; a database that includes all membership functions used 

in the fuzzy rules; and a reasoning mechanism that conducts an inference procedure 

by using rules and known facts to reach a conclusion (Jain, Tan and Lim, 2008).  

Each fuzzy rule is an explicit description between inputs (i.e., antecedents) and 

output (i.e., consequence). Such a relationship indicates the behavioral link between 

the antecedents and the consequence locally.  Mitra and Hayashi (2000) argued that 

FSs can be broadly categorized into two families.  The first include linguistic models 

based on collection of if-then rules, whose antecedents and consequence utilize fuzzy 

values.  The second category is based on the Sugeno-type systems (Takagi and 

Sugeno, 1985), which uses a rule structure that has fuzzy antecedent and functional 

consequent parts. 

 

EAs are a collection of algorithms based on the principles of evolution, 

heredity, and natural selection in living populations.  There are five major EAs (Jain 

et al., 2008), viz., Genetic Algorithm (GA), Evolutionary Programming (EP), 

Evolution Strategy (ES), Genetic Programming (GP), and Learning Classifier System 
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(LCS).  GA will be utilized in this thesis as the EA tool; however, the five EA types 

are introduced as follows. 

 

GA proposed by Holland (1962) is the most popular EA technique for solving 

optimisation problems.  GA is based on finding the population in a search space that 

fits the fitness function.  Three main search operators used in GAs are selection, 

crossover, and mutation. The selection operator is responsible for choosing a subset 

group of candidate solutions (from a population) that are subsequently used to 

generate new candidate solutions with the crossover and mutation operators. The 

crossover operator is applied to combine genetic information of the existing 

candidate solutions whereas the mutation operator is used to create variations of a 

single candidate solution (Holland, 1962). 

 

EP on the other hand focuses on the development of behaviour models while 

GA is concerned with genetic models. EP is based on simulation of adaptive 

behaviour in evolution.  It was introduced a few years after GA by Fogel et al. 

(1966), EP used finite-state machines to simulate intelligent behaviour. In EP, 

candidate solutions to a problem are considered as a population of finite-state 

machines.  New candidate solutions (offspring) are generated from the existing 

candidate solutions (parents) through mutation.  All candidate solutions are assessed 

by a fitness function.  In EP, the crossover operator is not used.  Only the mutation 

operator is employed to provide variations in the population of candidate solutions.  

 

ES was proposed by Rechenberg (1965), initially it was developed to optimise 

parameters for aero-technology devices.  However the concept of evolution of 
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evolution was proposed by Schwefel (1981) as a development of ES.  ES deals with 

each candidate solution in the population as a genetic building block and a set of 

strategy parameters, and this candidate models the behaviour as a candidate solution 

in its environment (Rechenberg, 1994). 

 

GP on the other hand was proposed by Koza (1992), GP was targeted at using 

the computer to solve problems without being explicitly programmed to do so.  The 

development of GP came as an extension to GA, but the difference between the two 

is that the GP represents individuals as executable programs such as a tree, while GA 

uses a string for its representation.  

 

An interesting EA is the LCS (Holland, 1986), this algorithm tackles the 

machine learning process from a different angle, where it deals with it as an 

evolutionary rule discovery.  Fuzzy if-then rules represent the knowledge of LCSs.  

Rules are encoded as binary strings where each rule is a single binary string, and is 

considered a classifier by itself. 

 

 

2.3 Hybrid Computational Intelligence Models 

Hybrid CI models are concerned with any effective combination of intelligent 

techniques that perform superiorly or in a competitive way to single intelligent 

technique (Tsakonas and Dounias, 2002).  Although each CI constituent has its 

strength, researchers have found that combining (hybridisation) of CI constituents 

yields improved models.  In the following sub-sections, a review on hybrid CI 
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models for pattern classification is first given then a survey on hybrid CI models for 

rule extraction is also presented.  

 

 

2.3.1 Hybrid CI Models for Pattern Classification 

Chapter 1 introduced the FMM network as the backbone of this thesis.  The theory of 

FMM is built on ANNs and FSs.  Hence, the scope of review for pattern 

classification focused on the hybridisation of these two CI paradigms.  In general, 

hybrid CI models for pattern classification based on ANNs and FSs can be divided 

into two categories: ANN-based and FS-based hybrid methods.  Examples of hybrid 

CI models based on these two methods are reviewed, as follows. 

 

2.3.1.1 Artificial Neural Network-Based Hybrid CI models 

Incorporating fuzzy logic into an ANN generates an FS-based ANN  or fuzzy neural 

network (FNN) (Lin and Lee, 1996).  By injecting fuzzy principles into ANN 

structures, a system with a higher degree of flexibility is attained.  Fuzziness in this 

case means more flexibility in the boundaries of the system, which can be described 

as vaguely rather than crispy.  In FNNs, the numerical control parameters in the 

neuron and the connection weights can be replaced by fuzzy parameters.  Thus, 

FNNs have a higher degree of representation and training speed, and are more robust 

than conventional ANNs (Lin and Lee, 1996).  As FNNs are simply fuzzified ANN 

models, they inherit all the advantages of ANNs. 

 

Perhaps the first attempt to fuzzify an ANN was based on a single-layer 

perceptron network (Keller and Hunt, 1985).  The fuzzification of the single-layer 
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