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ABSTRAK 
 

Kajian kualiti air ini telah dijalankan di Empangan Mengkuang, Pulau Pinang yang terletak 

di bahagian barat laut, Malaysia. Kajian ini menumpukan terhadap komposisi dan variasi 

ruang-masa fitoplankton serta parameter fiziko-kimia, dan kajian dijalankan kerana 

kepentingan takungan ini sebagai bekalan air minuman dan kekurangan data algologi di 

kawasan kajian. Sembilan stesen persampelan telah dipilih di mana 6 stesen terletak di 

zon litoral dan 3 stesen di zon limnetik. Persampelan dilakukan pada setiap bulan dari 

permukaan air hingga ke dasar dengan jarak perantaraan 5 meter di sepanjang tempoh 

setahun bermula dari bulan Ogos 2005 hingga bulan Julai 2006 yang meliputi dua musim 

tropika yang berbeza (musim kering dan musim hujan). Julat tahunan suhu (29.28 – 33.50 

ºC), DO (3.25 – 9.20 mg/l), COD (2 – 54 mg/l), pH (4.5 – 9.44),  EC (40 - 70 µS/cm), TSS 

(0.22 – 30.00 mg/l), tahap kedalaman penembusan cahaya (1.15 – 3.10 m), klorofil a (0.03 

– 19.36 mg/m3), pengeluaran primer kasar (14.27 – 100.25 mgC/m3/hour), PO4-P (0.00 – 

0.07 mg/l), NH4
+-N (0.00 - 0.32 mg/l) and NO3

- -N (0.00 – 0.13 mg/l) di permukaan air telah 

direkodkan. Variasi bermusim EC, TSS, TDS, tahap kedalaman penembusan cahaya, 

nitrat, pengeluaran primer kasar dan kelimpahan fitoplankton telah dicatatkan yang secara 

signifikan lebih tinggi semasa  musim hujan. Walau bagaimanapun, tiada perbezaan 

signifikan komponen kimia dan komposisi fitoplankton di antara stesen (p>0.05). Suhu, 

DO, pH, klorofil a dan kelimpahan fitoplankton berkurangan dari permukaan ke dasar, 

sementara EC, TSS, TDS, jumlah kepekatan fosforus dan nitrogen meningkat secara 

vertikal. Menuju ke dasar menunjukkan bahawa kelimpahan fitoplankton dipengaruhi oleh 

nitrogen dan fosfate serta penembusan cahaya. Sebaliknya, faktor fizikal dan kimia ini 

dipengaruhi oleh taburan hujan, pengepaman air dan larian air, proses kitaran dalaman 

 xvi



(penguraian dan pemineralan) serta komuniti biologi. Sejumlah 128 spesies fitoplankton 

telah dikenalpasti dari permukaan ke bahagian dasar. Divisi Chlorophyta yang terdiri 

daripada Staurastrum apiculatum, Staurastrum paradoxum adalah paling dominan di 

permukaan air.  Glenodinium lenticula dan Lygnbya sp adalah species yang ketiga dan 

keempat paling dominan. Julat indeks kesamarataan dan Indeks Shannon-Weiner masing-

masing adalah 0.21-0.62 dan 1.28-2.80 (bit/individu). Pengiraan indeks keadaan trofik 

modifikasi Carlson berdasarkan klorofil a dan tahap kedalaman penembusan cahaya 

menunjukkan bahawa takungan air ini menghampiri keadaan mesotrofik, takungan ini juga 

disahkan oleh nilai nisbah N/P. Merujuk kepada Indeks Shannon-Weinner dan Indeks 

Saprobik, takungan air ini masing-masing diklasifikasikan dalam kelas III (sedikit tercemar) 

dan kelas II (sederhana tercemar). Kajian ini turut merekodkan kehadiran Anabaena, 

Microcystis, Oscillatoria, Nostoc, Dinobryon, Chroococcus, Dictyosphaerium 

ehrenbergianum, Staurastrum paradoxum dan Mallomonas yang menjadi penunjuk 

kepada ketoksikan, bau dan rasa yang kurang menyenangkan serta pencemaran di dalam 

ekosistem akuatik. Secara kesimpulannya, kajian ini dapat menunjukkan kelebihan dan 

kepentingan kajian algologi untuk mengesan pengurangan tahap kualiti air dalam 

ekosistem akuatik. 
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WATER QUALITY CHARACTERISTICS OF MENGKUANG RESERVOIR BASED 
ON PHYTOPLANKTON COMMUNITY STRUCTURE AND PHYSICO-CHEMICAL 

ANALYSIS 
 
 

ABSTRACT 
 

This study was carried out at Mengkuang Reservoir (M.R), Penang, in the northwest of 

Malaysia. This study focused on the spatio-temporal variation of phytoplankton 

composition and physico-chemical parameters, and was conducted due to the importance 

of the reservoir as a drinking water supply and also the lack of algological data of the 

studied area. 

Nine sampling stations were selected with six stations in littoral zone and three stations in 

the limnetic zone. Monthly samples were collected from the water surface to the bottom, 

with 5 meter intervals over a one-year period from August 2005 to July 2006, which were 

comprised of two different tropical seasons (the dry and rainy seasons). Physico-chemical 

parameters showed the following ranges on the surface water of Mengkuang Reservoir: 

temperature (29.28 – 33.50 ºC), DO (3.25 – 9.20 mg/l), COD (2 – 54 mg/l), pH (4.5 – 9.44),  

EC (40 - 70 µS/cm), TSS (0.22 – 30.00 mg/l), transparency depth (1.15 – 3.10 m), Chl-a 

(0.03 – 19.36 mg/m3), gross primary production (14.27 – 100.25 mgC/m3/hour), PO4-P 

(0.00 – 0.07 mg/l), NH4
+-N (0.00 - 0.32 mg/l) and NO3

- -N (0.00 – 0.13 mg/l). The seasonal 

variation was observed in nitrate, EC, TDS, transparency depth, and abundance of 

phytoplankton which were significantly higher during rainy season (p<0.05). However, 

there was no significant difference in chemical components as well as abundance of 

phytoplankton between stations (p>0.05). Temperature, DO, pH, Chl-a and abundance of 

phytoplankton decreased from the surface to the bottom, while EC, TSS, TDS, total 

phosphorus and  total nitrogen increased vertically towards the bottom. The results 

indicated that abundance of phytoplankton was affected by nitrogen and phosphate, ions 
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availability and light penetration. On the other hand, these physical and chemical factors 

were affected by the amount of rainfall, water pumping and water draw off, inter cycling 

process (decomposition and mineralization) as well as biological community. A total of 128 

phytoplankton species were identified. The dominant division was Chlorophyta, which 

were mainly composed of Staurastrum apiculatum and Staurastrum paradoxum. The third 

and fourth dominant species were Glenodinium lenticula (Pyrrophyta) and Lyngbya sp. 

(Cyanophyta), respectively. The range of evenness and Shannon-Weiner’s index was 

0.43-0.56 and 1.91-2.45 (bits/individual) in M.R, respectively. Calculation of the Carlson 

modified trophic state index showed that the reservoir was near to a mesotrophic state 

based on Chl-a and transparency depth. The mesotrophic state of the reservoir was also 

confirmed by the N/P ratio value. Based on the Shannon-Weiner’s and saprobic indices, 

the reservoir was in class III (slightly polluted) and class II (moderately polluted), 

respectively. The study also recorded the presence of Anabaena, Microcystis, Oscillatoria, 

Nostoc, Dinobryon, Chroococcus, Staurastrum paradoxum and Mallomonas which are 

indicators of toxic, unfavorable odors and flavors, and pollution in aquatic ecosystems. As 

a conclusion, this study showed the ability of algological studies to provide early warning of 

water degradation and its importance in water quality assessment.  
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CHAPTER 1 
 

INTRODUCTION 
 

 
Reservoirs are formed or modified by human activity for specific purposes, in order 

to provide a reliable and controllable resource. Reservoirs are usually found in areas of 

water scarcity or excess, or where there are agricultural or technological reasons to have 

controlled water resources (Wetzel, 1995). 

 

In Malaysia, there are 63 large reservoirs with a total storage of 25 billion m3
 

ranging in size from 10 ha (Mahang Reservoir) to 37000 ha (Kenyir Reservoir). The roles 

of these reservoirs are hydro-electric power generation, irrigation, drinking water supply, 

fisheries, recreational and tourist activities (Ho, 1994). 

 

Penang is one of the Malaysian States which is located in the northwest of 

Malaysia. This state has six reservoirs (dam structure) managed by PBA (Perbadanan 

Bekalan Air). Among these reservoirs, Mengkuang Reservoir (M.R) has the highest 

capacity. Capacity of Mengkuang Reservoir is almost 9 times more than Air Itam Reservoir 

(Table 1.1). The present water supplies are enough for Penang State, but with increasing 

population, the government should manage and conserve the existing water supply. 

 

 M.R was constructed in 1981. Impoundment of the reservoir started in 1984 but 

operation of the reservoir started in 1985. M.R is a modified homogeneous earthfill 

embankment. The spillway and drawoff work are combined in a single intake tower, 

directly upstream of the reservoir. The draw off work is comprised of four intakes at 

different levels in the intake tower.  

 



 2

The catchment area of M.R is surrounded by natural tropical forest and some 

recreational spot featuring landscaped gardens, and sitting benches. M.R supplies drinking 

water for Penang Island, Butterworth and other parts of this state. M.R is a part of the 

Mengkuang pumped storage scheme. It supplies more than 81 million gallons of untreated 

water per day to the Sungai Dua treatment plant.  

 
 
Table 1.1:  Reservoirs (dam structure) in Penang State (PBA, 2004). 
Name Year Built Type of Reservoir Capacity (Million liters) 

Teluk Bahang  1999 Earth Filled 19,240 

Air Itam 1963 Earth Filled   2,609 

Mengkuang 1985 Earth Filled 23,636 

Bukit Panchor  1975 Reinforced Concrete       273 

Cherok To'kun Not available Reinforced Concrete         85 

Berapit Not available Reinforced Concrete       170 

 

 

Economic development in Malaysia has increased in the recent 20 years. This 

development is associated with more land use, increase in population urbanization, 

industrialization, and the expansion of irrigated agriculture. The quantity and quality of 

water supply are affected by these factors (Ho, 1994). The increasing of population 

increases the demand for water while freshwater resources are limited. Therefore, it is 

important to protect the existing freshwater resources. 

 

Appropriate management and monitoring of drinking water supply is crucial. 

Monitoring of physico-chemical parameters is a routine water quality assessment in 

drinking water supply in Malaysia (Azrina et al., 2006). Chemical analysis has some 
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inadequacies such as time, cost and technical limitations (Wu et al., 2005). Meanwhile, 

biological studies are able to provide continuous temporal and spatial information in water 

ecosystem without aforementioned limitations (Swaminathan, 2003). In Malaysia, 

biological monitoring in water supplies normally involves total coliform count for detection 

of fecal pollution, while bloom of phytoplankton (eutrophication) is important as well as 

fecal pollution in the reservoirs. High phytoplankton density poses problems in drinking 

water treatment processes and recreational activities. Consumers may have difficulties in 

using the water because of its taste and odor, and they may also experience a toxic effect 

(Welch, 1992). Therefore algal studies (biomonitoring) are necessary to provide sufficient 

information in water quality and water degradation in reservoir (Yap, 1997; Swaminathan, 

2003). The advantages of employing the algae in biomonitoring of aquatic environment are 

based on the fact that these organisms reflect the concentration of physico-chemical 

parameters in the water ecosystem (Zbikowski et al., 2007). Algal communities quickly 

reflected environmental stressors because of their short lifecycles (McCormick and Cairns, 

1994). Therefore changes in the algal community can reflect the occurrence of pollutants 

or other environmental stressors (Johnstone et al., 2006) especially nutrients, which 

causes dramatic increase of algae. This event led to low oxygen condition that can affect 

other organisms in the aquatic food chain (Camargo and Alonso, 2006). 

 

Studies on water ecosystems in Malaysia has progressed in the last 30 years 

through many organizations which include local universities, government departments, 

research centers and non-governmental organizations (Ho, 1994). However, a few studies 

have been done on water quality in relation to distribution and species composition of 

algae (Yap, 1997; Wan Maznah and Mansor, 2000). In many developed European 

countries the algological study, and the use of this branch of science in water supply, has 

increased (Stevenson and Smol, 2003). In fact the growth of this science in waterworks 
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practice shows the importance of algal metabolism and algal events in relation to physico-

chemical parameters and water quality (Camargo and Alonso, 2006). Hence, Malaysia as 

a developing country needs a comprehensive and continuous biological monitoring of 

water supplies to predict and prevent the occurrences of water pollution and eutrophication 

event (Ho, 1994), especially in drinking water supply. Therefore, due to the importance of 

the M.R as a supply of drinking water in Penang State, and lack of biological study in this 

area, this reservoir was chosen to be studied.  This study investigates the relation between 

physico-chemical parameters and distribution of phytoplankton. Due to the role of 

stratification in reservoir function and decomposition to provide internal nutrient, vertical 

survey is also important in tropical reservoir.  Therefore the objectives of this study are:  

1- To determine physico-chemical parameters and their temporal and spatial fluctuation. 

2- To study temporal and spatial distribution of phytoplankton community. 

3- To study relationships between phytoplankton and physico-chemical parameters. 

4- To determine the status of water quality of the reservoir based on chemical and 

biological indices. 

 

1.1 Literature Review 

There are two types of inland water bodies, running or lotic waters and standing or 

lentic waters. Lotic waters include all forms of waters that whole body of water moves 

continuously in a specific direction, such as rivers and streams. Running waters dominate 

the Malaysian aquatic environment and support a rich diversity of inland habitats (Khoo et 

al., 2003). Standing or lentic waters include all forms of waters with no unidirectional water 

flow. Movement may occur in the form of wave action and internal currents. Lakes, 

reservoirs, ponds and lagoons are in this group (Kalff, 2002). There are only two natural 

lakes in Malaysia namely Tasik Chini and Tasik Bera (Ali and Lee, 1995). Man-made lakes 

or reservoirs dominate the Malaysian lentic ecosystems. 
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Standing water, compared to running water, is relatively stable. The main factor for 

the changes in lentic ecosystem is the rate of exchange of water through the system 

(retention time). In lakes or reservoirs, chemical, physical and biological characteristics are 

related to inflow and outflow of water. Therefore, changes of water characteristics may 

occur annually, seasonally, or diurnally. In lentic ecosystems, the remaining substances 

may persist for a long time after pollution ceased. Therefore, sometimes algal bloom is not 

contributed by the increasing nutrient inflow, but due to input of nutrients from benthic 

sediments (Hellawell, 1986). 

 

Lakes are natural features of accumulation of fresh water in depressions. Sources 

of water in lakes include rainfall, melting snow, runoff, stream flow, and groundwater flows 

(Wetzel, 1995). Unproductive lakes become eutrophic gradually with the passage of time. 

Normally, the process of lake succession takes hundreds to thousands of years, but under 

anthropogenic pressure this process is much faster.  

 

Reservoirs are man-made water bodies constructed for irrigation, drinking water 

supply, industries, navigation and power production, with variable size and depth 

(Maitland, 1978).  Water levels in reservoirs are related to river discharge that fluctuates 

seasonally. In storage reservoirs, water level is controlled by pumped in-flows and out-

flows. High algal production is more pronounced in shallow water bodies, but in deep 

reservoir there is more occurrence of stratification. In stratified reservoir there is more 

nutrient supply for algal growth (Maitland, 1978).      

  

Runoff waters to reservoirs are larger and more related to rainfall than natural 

lakes. In reservoirs inflows of water are primarily canalized and often not intercepted, so 
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they have high energy for erosion and large sediment-loading. There are also extensive 

loads of dissolved and particulate matters into the water body. Surface areas of drainage 

basins of reservoirs are larger than natural lake. In other words a reservoir is a very 

dynamic lake (Wetzel, 1995).  

 

1.1.1 Characteristics of reservoirs 

Morphometry is an important tool to identify water body, because it can be 

indirectly related to water quality. Morphometry factors that are usually used are lake area, 

zone, altitude, maximum depth and mean depth (to classify water in deep and shallow 

waters) (Buraschi et al., 2005). 

 

There is no certain boundary for classification of lake based on depth and size. 

According to Goldman and Horn (1983), lakes with a depth of more than 100 m are 

relatively deep and reasonably large with an area of more than 40-80 ha. Buraschi et al. 

(2005) characterized the lake levels as very shallow (mean depth < 3 m); shallow (mean 

depth 3-15 m) and deep (mean depth >15 m). Lakes with surface area of 0.5 -1 km2, 1-10 

km2, 10-100 km2 and >100 km2 are called very small, small, large and very large lake 

respectively. 

 

The most important physical factor of a reservoir is light. It affects the temperature, 

potential photosynthesis, and dissolved oxygen. Latitudinal, seasonal and diurnal 

gradients affect the amount of light that surface water absorbs. Aphotic and euphotic zone 

are related to light penetration. Euphotic zone refers to the maximum depth of water 

column that plants can grow (Wetzel, 1995). The littoral and limnetic zones are contained 

within the euphotic zone. The littoral zone is situated near the shore where rooted plants 

grow. It is the most productive zone, because primary productivity in this zone is 
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contributed by floating, submerged and rooted aquatic plants and phytoplankton. Light 

intensity and nutrients is high in this zone. Waters are well mix by wind. Limnetic zone is 

an open area of lake from surface to the depth where sunlight can penetrate. At the end of 

this zone is referred as the compensation level and described as the point that 

photosynthesis and respiration are equally balanced. In this depth light decreased to about 

1 percent of that at the surface (Goldman and Horne, 1983). The producer in limnetic zone 

is only phytoplankton. The profundal zone is the deep, dark water that sunlight cannot 

penetrate. In the bottom zone (below profundal zone) of freshwater there is benthic life 

comprised of decomposers and insects larvae. Decomposition increases nutrient content 

and other harmful substances such as hydrogen sulphide or ionized ammonia 

(Chareonpanich et al., 1994).  Hydrogen sulphide is very toxic, but ionized ammonia is a 

nutrient which is more easily taken up than nitrate. However, if the pH value exceeds 8.5, 

a rapid increase in unionized ammonia occurs, which is very toxic for fish (Kim et al., 

2006). 

 

  The greatest source of heat in water is solar radiation by direct absorption. Transfer 

of heat from the air and from the sediments occurs in relatively small amounts (Wetzel, 

1995). Temperature of surface water is affected by latitude, altitude, and season, time of 

the day, air circulation, flow and depth of the water body. In turn, physical, chemical and 

biological characteristic are affected by temperature.  

 

In tropical area, except for the deserts, the temperature is high throughout the year. 

There are no extreme seasonal changes and most of the flora and fauna generally remain 

abundant all over the year. Rainfall is the major climatic factor in the tropics, while in 

temperate regions temperature is the main climatic factor (Ewusie, 1980). 
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Temperature directly and indirectly affects the vertical distribution of plankton. The 

direct effect is on plankton mobility which selects certain favorable temperature. The 

indirect effect is by changing the density and viscosity of water. Indirect effect is on 

planktons, which are carefully adjusted to flotation (Sze, 1998). There is sufficient solar 

radiation for photosynthetic processes at the surface water of tropical region. However, 

intensity of heat damages the phytoplankton cells. Therefore, phytoplankton move 

vertically to protect themselves from intensity of heat and light at the surface layer.    

 

In tropical lakes, the difference of temperature between the surface and bottom is 

only about 4.5ºC, sometimes less, even in lakes of great depths. Thermal stratification 

occurs over a smaller difference of temperature compared to temperate region. Usually 

0.3ºC decreases of water temperature per meter is able to onset stratification in tropical 

lake (Guzman, 2005). Stratification prevents exchange of dissolved oxygen and nutrient 

elements between upper and lower layers in the water column. Therefore, it can restrict 

photosynthesis and production (Szyper and Lin, 1990). However, in tropical lakes thermal 

stratification usually occurs in short duration and is unstable and easily eliminated by wind 

and water mixing (Guzman, 2005). In reservoirs the use of multi-level off-takes, artificial 

mixing (Cox et al., 1998) or aeration device (Vandermeulen, 1992) is able to destratify and 

modify the thermal structure. 

 

Electrical conductivity (EC) is a measure of the ability of a solution to conduct an 

electric current. EC relates to total amount of dissolved ions in the water and has positive 

correlation with trophic gradient and phytoplankton abundance (Diaz et al., 2007). Sources 

of pollutants such as wastewater from sewage treatment plants, agricultural runoff, and 

urban runoff increases ions in water, which leads to an increase of EC (Nather Khan, 
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1990a). EC increases also during thermal stratification in hypolimnion due to an increase 

of decomposition.  

  

Conductivity of the lakes generally is lower during the rainy seasons than dry 

season. It is due to a dilution by rain and less evaporation during the rainy season, 

especially in lakes with short retention time (Zinabu, 2002).  

 

Total suspended solids (TSS) and total dissolved solids (TDS) correspond to non-

filterable and filterable residue, respectively. Suspended matter consists of silt, clay, fine 

particles of organic and inorganic matter, soluble organic compounds, plankton and other 

microscopic organisms. Therefore, turbidity and transparency change seasonally 

according to biological activity in the water and heavy rainfall (Maitland, 1978). TSS 

prevents the penetration of sunlight into the water column and has a negative effect on the 

primary production of phytoplankton (Liu, 2005).  

 

  Alkalinity is the acid-neutralizing capacities of water. Most natural waters contain 

low acidity.  Alkalinity is the indicator of the concentration of carbonate, bicarbonate and 

hydroxide, but it may include contributions from borate, phosphates, silicates and other 

basic compounds. Therefore, lakes that are located near agricultural or urban landscapes 

have higher levels of alkalinity. Waters of low alkalinity (< 24 mg /l as CaCO3) have a low 

buffering capacity.  

  

pH is an important variable in water quality assessment. It is affected by many 

biological (photosynthesis and respiration) and chemical processes (decomposition) in 

water body and all processes which are related to water supply and treatment. In 

unpolluted waters, pH is controlled by the balance between the carbon dioxide, carbonate 



 10

and bicarbonate ions. Daily variations in pH can also be caused by the photosynthesis and 

respiration cycles of algae in eutrophic waters. High value of pH (more than 8.5) is 

recorded in waters with high organic content and eutrophic condition (Kalff, 2002). 

 

Dissolved oxygen (DO) is essential to all forms of aquatic life. The DO content of 

natural waters is affected by photosynthetic activity, temperature, pressure, salinity, and 

turbulence.  Extreme input of organic matters from sewage decrease DO concentration in 

the reservoir. 

 

In tropical area, rate of decomposition is high at the bottom. Therefore, oxygen 

production (through photosynthesis) is less than oxygen consumption. Furthermore, the 

DO levels generally decline with depth and such lakes have clinograde oxygen profiles. By 

decreasing oxygen levels some sensitive animals may migrate, weaken, or die (Mackinnon 

et al., 1996). The same condition happens in stratified water columns. Khoo et al. (2003) 

reported that sharp stratification of dissolved oxygen between 7 m and 8 m of depths in a 

deep reservoir Tasek Kenyir. The zone below this depth was anaerobic because of 

decomposition. Within the anaerobic zone, high levels of sulphide were also detected. 

Natural eutrophication of the lake is strongly influenced by anaerobic conditions at the 

bottom (Ciglenecki et al., 2005). 

 

Biochemical oxygen demand (BOD) is a measure of the amount of oxygen 

consumed by microorganisms during the decomposition of organic matter in aquatic water 

bodies. During the first 5 days microorganisms consume (decompose) more than 80% of 

carbon components. Therefore, BOD5 test measures the oxygen demand for carbon 

components in 5 days. However, this process in tropical areas is complete in 3 days (Hii et 

al., 2006). The rate of oxygen consumption is affected by temperature, pH, the presence of 
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certain kind of microorganisms, and the type of organic and inorganic materials in the 

water (Sapari, 1996). BOD is high at the bottom of tropical region, due to thermal 

stratification and high microbial activity. Concentrations of BOD in unpolluted waters are 3 

mg/l as O2 or less (DOE, 2001).  

 

Chemical oxygen demand (COD) is a measure of oxygen that is required for 

oxidation of organic and inorganic matters in water. COD is affected by sewage and 

industrial plants. The COD concentration in unpolluted surface waters is less than 25 mg/ l 

as O2 (APHA, 1992; DOE, 2001).  

 

1.1.2 Nutrients 

Nutrients are essential for survival, reproduction and growth of phytoplankton. 

Extreme input of nutrients into water ecosystems leads to an excessive algal growth which 

is referred to as eutrophication. In fresh water, reducing the input nutrients, especially 

phosphorus and nitrogen are able to control eutrophication (Kalff, 2002).  

 

The forms of nitrogen in water are dissolved inorganic nitrogen (DIN) and dissolved 

organic nitrogen (DON). DIN is comprised of N2, ammonium, nitrite and nitrate (Welch, 

1992). Nitrogen enters the ecosystem from the atmosphere through biological process 

(nitrogen fixation). Ammonia constitutes the first stage in mineralization of organic 

nitrogen. Phytoplankton may prefer to use ammonium than other forms of nitrogen. 

Ammonia may also be exchanged between sediments and the overlying water. Ammonia 

occurs in small amounts in natural waters (less than 0.1 ppm). The amounts exceeding 2.5 

ppm are generally lethal and the quantities of more than 1 ppm usually indicate organic 

pollution. Usually the sources of ammonia pollution are from domestic sewage, industrial 
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waste and fertilizer run off. High ammonia concentrations may also be found at the bottom 

of tropical lakes which are anoxic.  

 

Other forms of DIN are nitrite and nitrate. Most of nitrite rapidly oxidizes to nitrate. 

Nitrate ion is the common form of combined nitrogen in natural waters and is an essential 

nutrient for aquatic plants. Generally, nitrate is not in great amount in natural water. Water 

may become enriched in nitrate by changes in the drainage area (Welch, 1992). These 

changes can be seen in rural and suburban areas, where inorganic nitrate fertilizers 

(usually ammonium nitrate or ammonium phosphate) are used in agricultural land (Moss, 

1998).     

 

   Phosphorus exists as dissolved and particulate forms in water. The forms of 

dissolved phosphorus (orthophosphate or soluble reactive phosphate) are inorganic and 

organic phosphorus. Total phosphate represented by organic and inorganic dissolved 

phosphorus and phosphate which is attached to particulate matter. Natural sources of 

phosphorus are mainly from rocks. Decomposition of organic matters at the bottom of 

stratified water provide inorganic nutrient (nitrogen and phosphors component) for algal 

growth in tropical reservoirs and lakes (Kalff, 2002).  

 

Organisms need phosphorus compounds for their maintenance. It is generally the 

limiting nutrient for algal growth. There is general agreement that an increase in nutrients, 

particularly phosphorus, is necessary to develop eutrophication. Phytoplankton carries 

away phosphorus after dying and sinks to the lake bed. Restoration of phosphorus to the 

upper waters is carried out by inflow of water rich in phosphorus, and by the return of 

phosphorus contained in the dead phytoplankton or other materials through phosphorus 

cycle (Cole, 1979; Goldman and Horn, 1983). 
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Relative amounts of major nutrients (C, H, O, N and P) are important for the 

growth, biomass, physiological state, and community structure of phytoplankton (Aralar et 

al., 2004).  

 

The major limiting factors in aquatic ecosystems are nitrogen and phosphorus. A 

water body is nitrogen limited when N/P mass ratio is less than 9:1 based on Salas and 

Martino (1991) and 10:1 based on Welch (1992).  In this condition, phytoplankton species 

that can fix atmospheric nitrogen (e.g. Cyanophyta) can grow well. Water bodies with N/P 

ratios greater than 20:1 are considered phosphorus limited.   Anton and Abdullah (1982) 

studied the effects of nutrient enrichments on phytoplankton composition in Ulu Langat 

Reservoir, Selangor, Malaysia. Their results showed obvious changes in phytoplankton 

composition in response to the addition of both NO3-N and PO4-P. When nitrogen was the 

limiting factor, the dominant group was Cyanophyta, followed by Bacillariophyta.  

 

The N/P ratio provides valuable information on the trophic state of water bodies 

(Grayson et al., 1997).  Oligotrophic lakes have higher N/P ratio than eutrophic lakes. 

Welch (1992) reported the N/P ratio of 70/1 in oligotrophic lakes while the ratio in 

hypertrophic lakes was 4/1.  

  

1.1.3 Physico-chemical assessment 

Anthropogenic factors as well as natural processes degrade surface waters and 

impair their use for drinking, industry, agriculture, recreation and other purposes. Due to 

the spatial and temporal variations in water chemistry, a monitoring program and reliable 

estimation of the quality of surface waters are necessary. Water quality index (WQI) is very 

useful for the classification of the monitored waters. The WQI can give an indication of the 

health of a reservoir. This index is a mathematical instrument used to transform large 
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quantities of water characterization data into a single number, which represents the water 

quality level (Sanchez et al., 2007).  

 

Department of Environment Malaysia (DOE-UM, 1994) has proposed a regional 

classification of WQI (Table 1.2). WQI is widely used in water quality assessment of rivers. 

However, it is also applied in lentic water by some researchers (Hernandez-Romero et al., 

2004; Sanchez et al., 2007; Othman et al., 2007). 

 
 
Table 1.2:  Water Quality Standards for Malaysia (DOE, 2001). 
Parameters unit Class I Class II Class III Class IV Class v 
pH  6.5 - 8.5 6 - 9 5 - 9 5 - 9  
EC µS/cm 1000 1000  6000  
DO mg/l 7 5 - 7 3 - 5 < 3 < 1 
BOD mg/l 1 3 6 12 >12 
COD mg/l 10 25 50 100 > 100 
Dissolved solid mg/l 500 1000  4000  
Suspended solid mg/l 25 50 150 300 > 300 
NH4

+       mg/l 0.1 0.3 0.9 2.7 > 2.7 
NO3

- mg/l natural 7  5 > 5 
WQI  91-100 71-90 51-70 26-50 0-25 
Water quality  Excellent Good Medium Bad Very bad 
 
 

1.1.4 Algae as bioindicator 

  Aquatic systems contain a wide variety of microorganisms, which interact with each 

other in various food webs. One of the main types of microorganisms in aquatic 

ecosystems is plankton.  

Phytoplankton are microscopic photosynthetic organisms having little or no 

resistance to the currents and living free-floating in open or pelagic waters. They are found 

in unicellular, colonial or filamentous forms (APHA, 1992). Phytoplankton is a 

photosynthetic plant and is grazed by zooplankton and small fish (Buraschi et al., 2005). 

There are various phytoplankton classifications. Kalff (2002) classified phytoplankton 
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based on respective pigmentations into eight divisions: 1) Cyanophyta (Blue-green algae) 

2) Chlorophyta (Green algae), 3) Chrysophyta (Golden-brown algae), 4) Bacillariophyta, 5) 

Cryptophyta, 6) Pyrrophyta (Dinoflagellate), 7) Euglenophyta, and 8) Rhodophyta (Red 

algae). 

 

Growth and reproduction of organisms are related to their particular requirements. 

Therefore, the presence or absence of particular species indicates the conditions of an 

environment. The use of bioindicator in environmental monitoring has some general 

advantages over chemical assessment, such as (1) reducing the cost for frequent 

sampling and analysis (Wu et al., 2005), (2) the equipment is relatively cheap (Kienzl et 

al., 2003), (3) relatively simple analysis (Zbikowski, et al., 2007), (4) the possibility to 

detect short term changes in water quality as well as long term changes in environment,  

and (5) sensitivity to various factors that affect the environment (Stein et al., 2007). This 

led to a global trend of using biological criteria in environmental assessment and pollution 

monitoring (Wu et al., 2005). 

 

Ideally all types of organisms (bacteria, algae, rooted plants and invertebrates) are 

suitable as indicators of pollution and should be studied, but their suitability depends upon 

laboratory facilities, technical skills and the objectives of the study. Each organism has 

advantages as indicator of ecosystems, and it is important that the organism reflect the 

situation of the study area (Anton, 2000). The advantages of using algae as a bioindicator 

are: algae responds rapidly to environmental changes and their reproduction is in short 

period. Algal sampling is easy, cheap and provides unique information compared to big 

sized organisms. Furthermore, algae are important in aquatic ecosystem as primary 
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producers and to form bloom. Finally, phytoplankton have worldwide distribution and they 

are available everywhere (McCormick and Cairns, 1994). 

 

Different biological assessments show various characteristics of phytoplankton, 

such as chlorophyll a, species diversity, evenness, species richness, and similarity indices. 

Multivariate analyses show the community structure and primary productivity is a 

community metabolism characteristic. Saprobic and trophic indices, and Palmer scale are 

characteristics that reflect the ecosystem conditions such as water quality, pollution and 

trophic levels (McCormick and Cairns, 1994). 

 

The green pigment (chlorophyll) is present in most photosynthetic organisms and 

provides an indirect measure of algal biomass and an indication of the trophic status of a 

water body. It is usually included in assessment programme for lakes and reservoirs, since 

excessive algal growth makes water unsuitable or more difficult to treat (Kuo et al., 2007). 

 

The growth and density of planktonic algae in a water body is related to many biotic 

factors such as grazing by zooplankton or other organisms and abiotic factors such as 

nutrients (principally nitrates and phosphates), temperature and light (Goldman and Horn, 

1983). 

  

The photosynthetic production of organic matter from inorganic substances under 

light in aquatic system is called primary production. Phytoplankton communities are the 

main producers in the water column. Measurement of primary productivity can show 

population of phytoplankton, trophic state, and penetration rate of light and energy 

available for secondary producers (Sorokin, 1999). 
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1.1.5 Saprobic System 

The evaluation of water quality based on self-purification zone of phytoplankton 

(saprobic indicators) is widely used in European and Asian countries (Walley et al., 2001; 

Barinova et al., 2004). Kolkwitz & Marsson (1902) developed the saprobic system for 

assessment of organic pollution using animals and plants assemblages. The lists of 

indicator species of alga, zooplankton, and benthic, were added by other researchers 

(Ismaely Sari, 2000). 

  

  In saprobic system, the classification of water body is made according to the 

amount of saprobic activity. The purpose of this index is for the arrangement of water 

bodies on a numerical scale according to their saprobity (Heckman et al., 1990; Ismaely 

Sari, 2000).  

  

The saprobic system is applicable only to organic pollution undergoing bacterial 

decomposition and is unsuitable for the assessment of toxin or other pollution. This index 

is applicable for natural small water bodies and artificial reservoirs. It is also applicable to 

all fresh water and marine environment which contain organic matter pollutants. In other 

words, this system can be used in a wide range of aquatic environment, such as 

assessment of water quality for drinking water, industrial and surface water pollution 

(Dokulil, 2003).  

 

1.1.6 Trophic State  

High trophic state may lead to eutrophication (Smith et al., 1999). Therefore, 

trophic state is an indicator of pollution and water quality level. 
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Trophic state is assessed with different methods, such as direct measurement of 

nitrogen and phosphorus compound concentrations (predictors) (Vollenweider, 1975). 

Other researchers utilized the effects of nutrient enrichment (response variables) through 

indirect measurement such as an increase in algal biomass and turbidity, or oxygen 

depletion (Cruzado, 1987) (Tables 1.3 and 1.4). Many researchers used both types of 

measurements in trophic state assessments. For example, Carlson (1977) established a 

classification of trophic state based on combined biological parameter (chlorophyll-a), 

physical parameter (Secchi disk transparency) and chemical parameter (phosphate). 

Phosphate concentration was used as one of the variables because it limits algal growth in 

most lakes. Chlorophyll-a is one component of this classification, because of the link 

between chlorophyll-a and phosphate, and its contribution to algal biomass. Transparency 

is influenced by the absorption characteristics of the water and its dissolved and 

particulate matter. In a water body with low TSS, the Secchi disk transparency is 

influenced by biological components, especially algal density (Welch, 1992). 

 

 Carlson’s formula was conducted mainly in temperate lakes with phosphate 

limitation. This method was modified by Kratzer & Brezonik (1981) for lakes in other region 

with nitrogen limitation. 
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Table1.3: Lake trophic status (City of Lakeland, 2001). 
 

Trophic class 
 

 
Typical Characteristics 
 

 
Transparency 
depth (cm) 

 
Chlorophyll (algae) 
(µg/l) 

 
Total Phosphorus 
(µg/l) 

 
Total Nitrogen 
(mg/l) 

 
Oligotrophic 
 

Low nutrients, clear water, 
few plants 

 
>39.6 

 
<3 

 
<15 

 
<0.04 

 
 
Mesotrophic 
 

Moderate nutrients, 
dominated by plants or 
algae, good water 
transparency 

 
 

24.4- 39.6 

 
 

3 - 7 
 

 
 

15 - 25 
 

 
 

0.04 - 0.06 
 

 
 
Eutrophic 
 

High nutrients, frequent 
algae blooms and/or 
dense grass beds, 
moderate to poor water 
transparency 

 
 

9.1- 24.4 

 
 

7 - 40 
 

 
 

10 - 25 
 

 
 

0.06 - 1.50 
 

 
Hypereutrophic 
 

High nutrients, persistent 
algae blooms, poor water 
Transparency 

 
<9.1 

 

 
> 40 

 

 
>25 

 
>1.50 
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Table 1.4: Lake trophic classifications based on Wetzel (1983).  
Parameter  Oligotrophic Mesotrophic Eutrophic 

Average 8 26.7 84.4 Total Phosphorus 
(µg/L)             Range 3.0-17.7 10.9 - 95.6 16.0 – 386.0 

Average 1.7 4.7 14.3 Chlorophyll-a  
(mg/m3) Range 0.3 - 4.5 3.0 – 11.0 3.0 – 78.0 

Average 9.9 4.2 2.6 Transparency 
depth (m) Range 5.4 - 28.3 1.5 – 8.1 0.8 – 7.0 
 

 

1.1.6.1 Trophic state and phytoplankton community  

Some of the trophic classifications are based on phytoplankton community (Mason, 

1991). Palmer (1980) introduced the list of algae that are important in eutrophic lake. 

These species are Merismopedia, Anabaena, Microcystis, Lyngbya, Oscillatoria, Rivularia, 

Chroococcus, Ceratium hirundinella, Closterium, Cosmarium, Ankistrodesmus falcatus, 

Scenedesmus, Oocystis, Asterionella formosa, Gyrosigma attenuatum, Melosira granulata, 

Navicula, Nitzschia, Tribonema, and Euglena. There is also a list of phytoplankton species 

from Hutchinson (1957) in different trophic state. According to his studies oligotrophic lake 

has species of Staurastrum, Cyclotella and Dinobryon. Pediastrum and Peridinium are 

indicators of mesotrophic and eutrophic water while Crucigenia, Dictyosphaerium and 

Tetraedron are indicators of eutrophic state in his classification. Asterionella and Melosira 

granulata may be observed in oligotrophic lake as well as eutrophic lake (Hutchinson, 

1957). In other study Snowella (Lepisto and Rosenstrom, 1998) was identified as 

indicators of eutrophic condition. Arthrodesmus incus and Diatoma vulgaris recorded as 

oligotrophic species in Heinonen (1980) trophic classification.  

 

Classification of trophic state is feasible by the results obtained in saprobic system 

(Dokulil, 2003).Therefore, identification of phytoplankton species provides useful 

information on trophic state in water ecosystems. 
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1.1.7 Community structure analysis as indicator of water conditions 

Diversity is a parameter of community structure which is related to the number of 

species (species richness) and abundance. This parameter is presented in several ways 

by different researchers. One of the common diversity indices is Shannon-Wiener index 

(H′) (Krebs, 1999). H′ has been used widely in environmental monitoring (Washington, 

1984).  

 

Rakocevis-Nedovic and Hollert (2005) found that with decreasing H′ value, the 

trophic status shifted from oligotrophic to eutrophic condition. According to the study of 

Salusso and Morana (2002), there are 3 classes of pollution status based on H′. In their 

scale, water bodies with H′ more than 3 has no contaminant, H′ values ranged 1-3 contain 

moderate contaminants and H′ <1 indicates high pollution level.  

 

In some studies, species richness and evenness were used to compare of different 

trophic status (Kitsiou & Karydis, 2000). Wilham and Dorris (1968) and Wilham (1970) also 

proposed a water quality classification based on H′.  

 

1.1.8 Biomonitoring in Malaysia 

In Malaysia, most of the information in water quality studies were not published or 

they are available through regional seminars, or internal university presses.  Water quality 

assessment was carried out based on different aspects such as physical and chemical 

pollution. It was found that the main physical pollution of reservoirs in Malaysia is from 

sediment. Ringlet Reservoir was clogged due to high levels of sediment. This 

environmental problem has sharply reduced fish production in Ringlet Reservoir (Ho, 

1994). 

 



 22

Malaysian rivers and reservoirs are suffering from an increase of population and 

urbanization, industrialization and agricultural activities (Sumiani et al., 2007). These 

pollution sources negatively affected the ecosystem as reflected by chemical elements in 

aquatic water bodies. 

 

Fulbright (1982) observed that surface water on the west coast in Peninsular 

Malaysia had high suspended dissolved solids and alkalinity. He concluded that surface 

water was deteriorated due to urban development. Ulu Lepar wetland (Nather Khan, 

1990a) and Sungai Kecil (Nather Khan, 1990b) showed low water quality, affected by palm 

oil factories around the water bodies and discharge of domestic wastes from the nearby 

household areas. Mohamed et al. (2002) found that because of pollution, most rivers in 

Sabah have wide variations of suspended solids (SS) and COD concentrations. Othman et 

al. (2007) investigated water quality of Chini Lake in Peninsular Malaysia.  Based on their 

study, water quality in Chini Lake was in Class II (good quality). However, some stations 

showed lower class of water quality (class III) because of the expansion of agricultural land 

(palm oil tree).  

 

Some of the researchers focused on the relation between water quality degradation 

and biological indices and community. Yeng (2006) showed that the increase of water 

pollution was associated with the appearance of certain phytoplankton (dinoflagellate) in 

the Ahning Reservoir. Nather Khan (1991) reported higher diversity values of 

phytoplankton in the moderately polluted stations compared to polluted stations in the 

Linggi River Basin Malaysia. Yap (1997) used H′ and saprobic index of phytoplankton for 

water quality assessment of river ecosystem. He concluded that ecological knowledge can 

be used in the management of water body. Ho & Peng (1997) also worked on H′ values of 

phytoplankton community in three rivers (Sungai Perlis, Sungai Perai and Sungai Juru) in 
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northern Peninsular. They classified the three rivers in class III (slightly polluted) based on 

H′ values. Periphytic algae in the Pinang River were studied by Wan Maznah and Mansor 

(2002). They reported that the sampling stations with higher value of saprobic index 

(higher level of water pollution) had the most tolerant species of diatom which are best 

adapted to the stressful environment.  

 

Distribution and biodiversity of benthic macroinvertebrates in Langat River with 

different level of water quality were studied by Arzina et al. (2006). They defined some 

sensitive and tolerant species of benthic macroinvertebrates according to their resistance 

to water pollution. These species can be used as bioindicator of clean and polluted water.  

  

Stobutzki et al. (2006) reported the reduction of fish production to 4–20% of the 

original yields were the result of water quality degradation and habitat alteration in 

Malaysia.  

 

In Malaysia the determination of trophic state mainly conducted by measurement of 

physico-chemical parameters, primary productivity and chlorophyll-a. In a study conducted 

in Muda and Pedu Reservoir by Zulkifli (1980), it was found that both reservoirs were 

slightly eutrophic by moderate levels of nitrogen, alkalinity and pH. There were no villages 

and settlements in the catchment areas. Thus, the source of nutrient was probably from 

natural enrichment.  

 

Ali (1996) studied Temenggor and Bersia Reservoirs (hydroelectric power 

generation dam). His study showed that the reservoir was oligotrophic with low 

concentration of nutrients such as orthophosphate and nitrate, low primary productivity and 

chlorophyll-a, and high transparency (2-5 m). He concluded that these two reservoirs were 
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unaffected by human activities. Meor et al. (2002) showed that the Chenderoh Reservoir, 

especially in embayment area was at risk of eutrophication, because some of the chemical 

and biological factors (chlorophyll-a, primary productivity and nutrients) were increased 

compared to earlier studies in this area.  

 

All the studies provided useful information for conservation and maintenance of 

high quality water resources for various purposes, including human consumption, 

irrigation, protection of wildlife and native fish populations and recreation.  
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