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τ  Carrier lifetime 
 

d  Thickness of the active layer 
 

spR  Spontaneous emission rate 
 

α  Total loss 
 

intη  Internal efficiency 
 

extη  External quantum efficiency 
 

thI  Threshold current 
 

dη  External differential quantum efficiency 
 

thJ  Threshold current density 
 

0J  Transparency threshold current density 
 

0T  Characteristic temperature 
 

Cp Specific heat 
 

κ  Thermal conductivity 
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λ Wavelength. 
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REKABENTUK  DAN PRESTASI STRUKTUR LASER  

BERASASKAN KUMPULAN III-NITRIDA 
 

ABSTRAK 
 
  

Simulasi peranti bagi ciri elektrik, optik dan terma diod-diod laser (LDs) 

berasaskan GaN telah dikaji. Bagi laser-laser sedemikian adalah susah memperolehi 

lapisan penutup-p yang mempunyai ketebalan yang mencukupi, yang berkomposisi 

Al tinggi dan berketumpatan penerima yang tinggi. Ini menghasilkan aliran lebihan 

elektron-elektron dari rantau aktif ke lapisan penutup-p yang menghasilkan kesan-

kesan ketara ke atas peningkatan ketumpatan arus ambang. Maka, rekabentuk peranti 

bagi lapisan strukturnya adalah sangat penting supaya menghasilkan laser-laser 

ambang rendah. Ciri-ciri terma adalah juga sangat penting bagi laser-laser berasaskan 

GaN. Keputusan analisis terma menunjukkan bahawa pengurangan ketumpatan arus 

ambang dan voltan operasi adalah penting bagi menambahbaiki ciri suhu laser-laser 

semikonduktor GaN. 

Dalam kajian ini rekabentuk struktur LDs InGaN termasuk peranti rantau 

aktif perigi kuantum multi (MQW) telah diperihal dan dikaji menggunakan simulator 

“Integrated System Engineering Technical Computer Aided Design“ (ISE TCAD). 

Parameter-parameter struktur LDs diubah dan dioptimumkan bagi menghasilkan 

prestasi tinggi. Kajian pengoptimuman ini merangkumi aspek-aspek seperti 

ketebalan rantau aktif, pendopan, ketebalan rantau lapisan penghenti, ketebalan 

perigi dan sawar kuantum,  bilangan perigi kuantum dan beberapa pendekatan bagi 

penambahbaikan dan perolehan kecekapan tinggi, arus ambang rendah dan kuasa 

keluaran tinggi bagi LDs InGaN. Struktur LDs asas yang dikaji adalah jenis Fabry-

Perot InGaN heterostruktur berpasangan (DH), heterostruktur pengurungan 

berasingan (SCH) dan struktur perigi kuantum multi (MQW). 
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Berasaskan keputusan-keputusan kajian, kuasa keluaran 84 mW dan arus 

ambang 110 mA diperolehi bagi struktur LD DH. Anjakan biru bagi panjang 

gelombang pancaran laser dari 428 nm ke 426.2 nm telah dapat diperhatikan. Bagi 

LD InGaN tunggal seperti pukal, kuasa keluaran 97 mW dan nilai ambang arus 90 

mA telah diperolehi. Terdapat kesan-kesan yang kuat ke atas prestasi laser dengan 

kehadiran dan tanpa kehadiran lapisan penghenti. 

LDs prestasi tinggi diperolehi menggunakan perigi kuantum multi yang 

dikenakan dengan parameter-parameter yang telah dioptimumkan. Arus ambang 

paling rendah, kecekapan kuantum luaran dan suhu cirian yang lebih tinggi 

diperolehi apabila bilangan lapisan perigi InGaN adalah dua pada pancaran laser 

dengan panjang gelombang 415 nm, yang dikaitkan dengan permasalahan pembawa-

pembawa inhomogen. 

Penambahbaikan prestasi laser dan suhu cirian telah juga diperolehi 

menggunakan sawar kuantum multi (MQBs) AlGaN/GaN di dalam diod laser 

InGaN/GaN. Arus ambang bernilai 10.9 mA, kuasa keluaran dan kecekapan 

kecerunan masing-masing bernilai 17.42 mW dan 1.6 W/A, dan suhu cirian bernilai 

307 K telah diperolehi. Semua ini dikaitkan dengan pengaruh sawar yang tinggi di 

dalam MQBs yang menghalang kebocoran pembawa dari rantau aktif. Juga telah 

dicerapkan bahawa perigi kuantum tunggal (SWQ) InGaN/GaN bertegasan dapat 

mengurangkan arus ambang dari nilai 18.5 mA ke 14.5 mA dan kuasa keluaraw 

ditingkatkan dari 15 mW ke 28 mW dan menambahbaikan prestasi laser jika 

dibandingkan dengan yang tanpa tegasan. 
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DESIGN AND PERFORMANCE OF LASER STRUCTURES BASED 

ON GROUP III-NITRIDES 
 

 ABSTRACT 
 

Device simulations for the electrical, optical and thermal characteristics of 

GaN-based laser diodes (LDs) have been investigated.  It is difficult to obtain p-

cladding layers with sufficient thickness of high Al composition and high acceptor 

concentration, this causes electrons overflow from the active region to the                   

p-cladding layers which has significant effects on the increase in the threshold 

current density. Therefore, the device design for the layer structure is very important 

in order to realize low-threshold lasers. Thermal characteristics are also very 

important for GaN-based lasers. The results of thermal analysis indicate that the 

reduction in the threshold current density and operation voltage is very important for 

improving the temperature characteristics of GaN semiconductor lasers. 

 In this work the design of InGaN LDs structures including multi quantum 

wells (MQWs) active region device are described and investigated by integrated 

system engineering technology computer aided design (ISE TCAD) device 

simulator.  The parameters of the LDs structures are varied and optimized for high 

performance. This optimization study involves aspects such as thickness of active 

region, doping, thickness of stopper layer region, thickness of quantum wells and 

quantum barriers, number of quantum wells and several approaches to improve and 

achieve high efficiency, low threshold current   and high output power of InGaN 

LDs. The basic LDs structures treated here are Fabry–Perot type InGaN double 

heterostructure (DH), separate confinement heterostructure (SCH) and multi 

quantum wells (MQWs) 
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Based on our results, output power of 84 mW and threshold current of        

110 mA are obtained from DH LD structure. A blue shift for the laser emission 

wavelength from 428 nm to 426.2 nm are also observed. In InGaN single bulk like 

LD, output power value of 97 mW and threshold current value of 90 mA are 

obtained. There are strong effects was observed with the presence and absence of the 

stopper layer on the laser performance.  

High performance LD has been obtained by using multi quantum wells 

incorporated with the optimized parameters. The lowest threshold current, higher 

external quantum efficiency and characteristic temperature are obtained when the 

number of InGaN well layers is two, at our laser emission wavelength of 415 nm, 

which is related to the problem of inhomogeneous carrier. 

 An improvement in laser performance and characteristic temperature has 

been achieved using AlGaN/GaN multiquantum barriers (MQBs) in InGaN/GaN 

laser diodes. Threshold current value of 10.9 mA, output power and slope efficiency 

of 17.42 mW and 1.6 W/A respectively and characteristic temperature of 307 K are 

obtained. These are attributed to the influence of the high barriers in the MQBs in 

preventing carrier leakage from the active region. It is also observed that the 

InGaN/GaN strained single quantum well (SQW) LD reduced the threshold current   

from the value of 18.5 mA to 14.5 mA and the output power increases from 15 mW 

to 28 mW and improved the laser performance as compared with their unstrained 

counterparts. 
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CHAPTER 1 
 

INTRODUCTION 
 

 
1.1 Overview  
 

The first semiconductor laser diodes (LDs) were made by heavily doping a   

p-n junction and then cleaving reflecting facets at either end of its Fabry-Perot 

resonant cavity (Mroziewicz et al., 1991). This design is less efficient than the 

double heterostructure (DH) and multi quantum wells (MQWs) designs that would 

follow since, in a p-n junction, there is no clearly defined region where 

recombination takes place. Carriers can easily be lost to diffusion before 

recombination can occur. This means a high threshold current is necessary to achieve 

stimulated emission and lasing. Threshold currents were reduced with the 

development of the DH LD. 

 The DH consists of a narrow bandgap material sandwiched between two 

wider bandgap materials. This forms a quantum well (QW) which very effectively 

confines carriers within the well when forward biased. This is advantageous since the 

carriers tend to remain there until they recombine.  It thus became possible to control 

where the radiative transitions would occur within the device. The DH has a 

secondary advantage in that the wider bandgap materials tend to have lower indices 

of refraction. This means that they act as cladding layers to guide the light 

propagating through the active layer. The addition of a stripe contact to the top 

surface of the device allows for the current flow to be confined to a small region of 

the device. The cavity is formed by cleaving the semiconductor along a crystal plane 

using a diamond scribe.  

The advent of the multi quantum wells (MQWs) LD further enhanced carrier 

confinement.  In a MQWs LD, carriers are confined in a series of thin quantum wells 



 2

(also called superlattices for small enough scales). Additionally beneficial, emission 

spectra can be tuned by varying the width of the quantum well layer since the 

thickness of a quantum well determines the eigenvalues allowable in the well (and 

the eigenvalues determine the transition energies). Here we briefly identify some of 

the benefits of DH and MQW LDs versus their bulk laser counterparts:  

 The DH/MQWs LDs achieve larger gain for a low concentration of injected 

carriers. This also implies a low transparent current density. DH/MQWs LDs achieve 

a larger differential gain. This allows a higher speed of operation which is vital to 

applications in the telecommunications industry. Also, DH/MQWs LDs split the light 

and heavy hole energy bands, which allows control of optical polarization (Zory, 

1993). In addition, DH/MQWs LDs have much narrower gain spectra. This improves 

device efficiency and optical coupling.  

The development of blue light emitting semiconductor devices involved 

many challenges. Akasaki, Amano and Nakamura, respectively, succeeded in 

overcoming these challenges through highly creative approaches within the same 

time frame (Takeda Award 2002 Achievement Facts Sheet).  Akasaki was confident 

that gallium nitride (GaN) would be the best material with which to make blue light 

emitting semiconductor devices, although the majority of researchers were using zinc 

selenide (ZnSe). Akasaki and Amano fabricated GaN film with good crystal quality 

and uniform thickness on an aluminum nitride (AlN) buffer layer grown on a 

sapphire substrate. Then, they fabricated a p-type GaN layer with high conductivity 

by using electron beam irradiation on a p-type impurity doped GaN thin film. In 

1989, they developed a p-n junction blue light emitting diode (LED) in their 

laboratory. They observed emission of strong blue light with a narrow bandwidth, 

and it was reported in November 1995.  Nakamura also chose to work with GaN, 
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rather than with ZnSe used by the majority of researchers. He invented film 

deposition equipment with a unique two-flow method, and fabricated GaN film with 

good crystal quality and uniform thickness. He achieved high conductivity, p-type 

GaN by heat treatment in the atmosphere without hydrogen. He developed a high 

brightness blue light emitting diode (LED) of double heterostructure using In-doped 

GaN layer in 1993. He succeeded in achieving laser oscillation by introducing a 

multi-quantum well structure with several tens of InGaN layers and a blocking layer, 

and reported this in January 1996. Figure 1.1 shows the timeline activities of GaN 

over the years and some of its applications.  

 

 

 

 Figure 1.1: Number of publications (INSPEC) and activities in GaN 
                                 over the years (Akasaki, 2002). 

  
 
 

 Based on these achievements, the blue LED was introduced in 1993 and the 

blue LD was introduced in 1999. Those were the first blue LED and blue LD 

commercialized products in the world.  Akasaki, Amano and Nakamura overcame 
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difficult challenges that required a creative approach. Moreover, they contributed to 

the commercialization of blue LD and LED-based devices. The Takeda Award 2002 

for Social/Economic Well-Being is awarded to this techno-entrepreneurial 

achievement that embodies engineering intellect and knowledge, and enables many 

applications in human life that will expand the wealth, richness, and happiness of 

people. 

Akasaki undertook research to develop blue light emitting devices using GaN 

in the 1970s. He adopted a molecular beam epitaxy (MBE) method that can bond 

each molecule to the right place, in addition to the previously used hydride vapor 

phase epitaxy (HVPE) method. He succeeded in fabricating a GaN single crystal film 

using MBE method. In 1981, he achieved light emission from a metal-insulator 

semiconductor structure with 0.12% efficiency using HVPE method                        

(Ohki et al., 1981).  

However, he could not develop a thin film with good thickness uniformity. 

Also, he could not produce a p-type GaN film. Even on this macroscopically inferior 

quality crystal, he noticed a strong light emission from the very small spot of film 

that had thickness uniformity. This observation convinced him that GaN was, indeed, 

the material with which to develop a blue light emitting device, despite the fact that 

many other researchers had abandoned GaN-based research.  In 1981, Akasaki 

moved to Nagoya University to continue his research. In 1982, Amano joined 

Akasaki’s laboratory and began his research work. 

Akasaki had recognized the limitations of the HVPE method and the MBE 

method for GaN thin film fabrication. The problem with the HVPE method is that the 

crystallinity of thin film is bad under high speed of film fabrication. While the 

problems associated with the MBE method include slow film fabrication speed and 
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the difficulty in attaining a stoichiometric composition. This is a script to the 

nitrogen which is easily pulled out by its high vapor pressure in an ultra-high vacuum 

ambient atmosphere. He decided to use a metal organic chemical vapor deposition 

method  (MOCVD method) that brought an appropriate film fabrication speed in the 

same temperature region for each film. He selected a sapphire substrate, which can 

be used at a GaN film fabrication temperature of over 1,000 °C in MOCVD method, 

and has lattice symmetry near to that of GaN. However, because the lattice constant 

difference was 16 percent, it was a difficult challenge to fabricate hetero epitaxial 

thin film with good crystal quality and thickness uniformity.  

Akasaki and Amano designed and developed the MOCVD equipment by 

themselves, because MOCVD fabrication equipment that could be used for GaN was 

not available at that time. They tried to identify the best fabrication conditions by 

repeating experiments with various combinations of substrate temperature, vacuum 

pressure, material gas feed rate, inactive gas feed rate, fabrication time length, and so 

on. They performed over 1,500 experiments in two years, but they could not 

fabricate thin film with good crystal quality and thickness uniformity. They 

conceived of locating a buffer layer fabricated at low temperature between the 

sapphire substrate and the GaN thin film after thorough investigation of their 

experimental results. They selected GaN, aluminum nitride (AlN), SiC, and zinc 

oxide as the candidates. They succeeded in fabricating GaN thin film with good 

crystal quality and thickness uniformity using AlN as a buffer layer in 1986   

(Amano et al., 1983). Good crystal quality of the film was confirmed using 

photoluminescence, X-ray diffraction, Hall effect measurement, transmission 

electron microscope and so on.  From the result of Hall effect measurement, the 

electron mobility at room temperature was calculated to be improved from              
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50 cm2/V.s to 450 cm2 /V.s (Akasaki et al., 1989). Moreover, they succeeded in 

realizing the n-type thin film with thickness uniformity and good conductivity 

(Amano and Akasaki, 1990). This success was achieved not just through one 

experiment, as above, but instead required a tremendous number of experiments to 

find the optimized conditions that made it a great breakthrough. 

GaN thin films usually became n-type semiconductors, because they 

contained smaller stoichiometric numbers of nitrogen. Attempts were made to make 

a p-type layer using acceptor-doping material. This was also a big hurdle to making a 

GaN light emitting device. Akasaki and Amano initially used zinc as an acceptor 

dopant and tried to fabricate p-type GaN, but they did not achieve success. After they 

used magnesium as a dopant because of its higher electron affinity, they still did not 

achieve success. In 1988, Amano found that cathode luminescence light intensity 

increases with electron beam irradiation in other experiments to measure cathode 

luminescence of acceptor doped GaN. He thought from this result that the electrical 

and optical characteristics of acceptor doped GaN thin film was changed by electron 

beam irradiation (Amano et al., 1988).  

 Based on this, they measured the electrical characteristics of 10 kV electron 

irradiated Mg doped GaN thin film and found that the resistivity decreased by a 

factor of 10,000 to   35 Ohm-cm, and confirmed that GaN film is clearly p-type by its 

Hall effect measurement. Its hole mobility was 8 cm2/ V.s. They made a p-n junction 

at the same time and measured current rising in the forward direction on the current-

voltage curve and light emission both are characteristics of p-n junction           

(Amano et al., 1989). This p-type layer fabrication method by electron beam 

irradiation was the historic first fabrication of p-type GaN. They made an important 

step toward developing a blue light emitting semiconductor device by inventing p-
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type GaN fabrication and GaN layer fabrication method.  From 1987, Akasaki and 

Amano led blue LED development at Toyoda Gosei Co. Ltd.; they received funding 

from the Japan Science and Technology Corporation. In 1992, they succeeded in 

developing a bright blue LED with 1 percent light emitting efficiency. Toyoda Gosei 

announced commercial production of blue LEDs in 1995. 

Akasaki and Amano also undertook the challenges of developing a blue LD. 

In 1990, they succeeded in measuring narrow bandwidth 374 nm stimulated emission 

at room temperature with high density electron-hole pairs created by radiating 337nm 

nitrogen laser beam on a GaN thin film, which was fabricated on a low temperature 

buffer layer with good thickness uniformity (Amano et al., 1990). They fabricated a 

multi-quantum well structure device which is decreasing the laser diode threshold 

power density. They succeeded in measuring strong emission of 3nm half bandwidth 

on 1.0 kA/cm injection current density, which they reported in Japanese Journal of 

Applied Physics in November 1995 (Akasaki et al., 1995).   They reported achieving 

a laser oscillation of 405nm wavelength in June 1996 (Akasaki et al., 1996). 

Shuji Nakamura began development of a blue light emitting semiconductor 

device at Nichia Chemical Industries, Ltd., in 1988. In order to undertake this 

research, he had to obtain the consent of the president of Nichia Chemical Industries 

through direct negotiation, something that was extraordinary for a researcher in a 

Japanese company to do. Material selection was an important issue. Since many 

researchers were pursuing ZnSe-based blue LED research and would patent their 

manufacturing technology processes, Nakamura decided it would be difficult to 

develop a novel technology. Therefore, he selected GaN as the focus of his research, 

which was only being pursued by a minority of researchers. Nakamura had the 
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confidence and engineering creativity to solve the technical problems stemming from 

GaN-based research. 

Nakamura began his experiment to make GaN thin film using standard 

equipment with a well-known substrate material, sapphire, and a well known method, 

MOCVD. However, GaN thin film with good uniformity had yet to be produced. 

Nakamura thought that the gas flow scheme was the key issue to improving film 

uniformity. This approach is different from that taken by Akasaki and Amano, who 

introduced the low-temperature buffer layer. Nakamura thought over many kinds of 

gas flow schemes that were different from the conventional layer flow. In the 

conventional gas flow, material gases, including Ga compound and nitrogen, were 

supplied in parallel to the substrate surface as the layer flow.  

This conventional scheme was considered to be rational but had achieved 

only inferior uniformity and less than stoichiometric nitrogen content. Nakamura 

repeatedly modified the MOCVD equipment by himself to change the gas flow mode, 

and performed experiments over 500 times in a short period. Finally, he found the 

most appropriate method where the main material gases, including Ga compound, 

flow in parallel to the substrate, and nitrogen and hydrogen are supplied vertically 

from the upper side to the substrate surface. In 1991, he succeeded in fabricating a 

GaN thin film with superior uniformity using this method, which he named the “two-

flow method” (Nakamura et al., 1991a). The electron mobility calculated from the 

Hall effect measurement with this GaN thin film was 200 cm2/ V.s, which was much 

larger than the conventional result of 90 cm2/ V.s. In an additional experiment, in 

which the low temperature buffer layer was introduced as well as the two flow 

method, the resultant GaN thin film showed 500 cm2/ V.s, which is a satisfactory 

figure for light emitting device fabrication. Moreover, in 1992, he achieved high 
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quality InGaN ternary compound thin film by the two flow method. This film was 

necessary to optimize the emitted light wavelength and to improve the emission 

efficiency (Nakamura and Mukai, 1992). 

Nakamura reexamined the material for the low-temperature buffer layer and 

found that not only AlN but also GaN itself was suitable (Nakamura, 1991b). In the 

case of GaN, the material gas change is not needed between the buffer layer and the 

active layer. This is practically important and beneficial for mass production 

technology. In order to fabricate the p-type GaN layer, Nakamura investigated 

another more practical method than that with electron irradiation studied by Akasaki 

and Amano. Heat treatment, using a specimen doped with magnesium as the acceptor 

impurity, had been studied but had proven unsuccessful. Nakamura reexamined the 

heat treatment effect and found that a hydrogen-free atmosphere was essential to 

activate the doped magnesium and get the p-type layer. He clarified the mechanism 

of p-type formation, proposing a model based on the connection between hydrogen 

atoms and acceptor impurities (Nakamura, 1992). Using this method, in 1992, the 

specific resistance of heat-treated GaN thin film was improved to 2 Ohm-cm smaller 

than usual by more than a factor of 100,000 and the superior p-type layer was 

successfully obtained where the hole mobility by Hall measurement was 10 cm2/ V.s. 

Using the above-mentioned technologies, Nakamura fabricated p-n homo 

junction blue LEDs with 0.18 % light emitting efficiency and the double 

heterostructure type with   0.22 % light emitting efficiency in 1992. The latter one 

was improved to 2.7 % light emitting efficiency using the above mentioned InGaN 

thin film as the light emitting layer, in 1993 ( Nakamura et al.,  1994). Based on 

these results, Nichia Chemical Industries delivered the world’s first blue LEDs in 
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1993. Moreover, the quantum-well structure was adopted to develop the high 

brightness blue LED with 9.2 % light emitting efficiency (Nakamura   et al., 1995). 

Nakamura investigated the InGaN light emitting layer in detail. Before that 

time, to achieve a long light emission lifespan, the maximum allowable number of 

crystal defects was considered to be fewer than 103 cm-2. Although there were many 

crystal defects about 1010 cm-2  in the InGaN film of LED, the lifespan of this LED 

was longer than 100,000 hours. The reason for this long lifespan with that level of 

defects is as follows. The distribution of indium atoms doped in GaN film is not 

uniform but fluctuates slightly, and consequently the potential for electrons in the 

crystal is not uniform but varies locally. Injected electrons are trapped in this 

localized potential and recombined with holes to emit the light without being 

captured by the crystal defect region. This kind of localized potential was a 

thoroughly new phenomenon not found in any previous crystal material and found 

first in this ternary mixed crystal InGaN. The research project then started 

intentionally to design and to make this kind of localization in the crystal. 

Based on these technologies for GaN-based blue LEDs, Nakamura succeeded 

in achieving high power pulse oscillation of the GaN-based blue LD with an InGaN 

multi-quantum well structure and cladding layers. This was reported in the January 

1996 issue of Japanese Journal of Applied Physics (Nakamura et al., 1996). The key 

step for achieving this LD oscillation was introducing InGaN twenty cycle’s multi-

quantum well structure for the light emitting layer and AlGaN film for blocking layer 

 In the case of LDs, compared to LEDs, the number of defects had to be 

decreased still more to obtain a long lifespan, since the number of injected electrons 

in LDs is larger. Nakamura adopted the epitaxial lateral overgrowth (ELOG) method 

(Usui et al., 1997). In 1998, he succeeded in decreasing the defects from  1010 cm-2 to 
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107 cm-2 and achieved 290 hours of continuous oscillation at room temperature, from 

which the oscillating lifespan was estimated to be 10 thousand hours. In 1999, Nichia 

Chemical Industries delivered the world’s first blue LD (Nakamura et al., 2000).  

 

1.2 Research Background 

The first demonstration of a GaN based blue laser diode by Shuji Nakamura 

was followed by a tremendous research and development effort around the world. 

Gallium nitride technology enables a range of novel applications with vast consumer 

markets. Examples are full color video displays, solid-state lighting, and high-

definition DVD players. However, there still remains a strong need for a more 

detailed understanding of microscopic physical processes in nitride devices. 

Advanced models and numerical simulation can help to investigate those processes 

and to improve the device   performance. 

1.3 Objectives of Study  
 

We analyze the performance of nitride Fabry-Perot InGaN laser diodes 

theoretically using advanced laser software simulator. The vertical carrier leakage, 

lateral current spreading are some of the major problems because the reduction of 

such carrier losses is important to achieve less self heating and higher output power. 

Also, the effects of the inhomogeneous carriers distribution in the quantum well and 

the internal fields due to polarization on the laser diode performance are crucial issue 

that need to be investigated and solved. The important operating parameters of 

InGaN LDs such as internal quantum efficiency ( )iη , the internal loss iα   

characteristic temperature )( 0T  and the transparency current density J0 are the key 

parameters which control the operating characteristics of LD. These parameters will 

be calculated and investigated for InGaN laser structures designed in this study.   
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1.4 Out Line of Thesis  

Briefly, the content of this thesis are presented as follows: 

Chapter 1 described the history of growth and the development of III- nitride 

material and its application for some optoelectronics devices such as LED and LD.  

Chapter 2 explains in general the basic theories and concepts of laser diode 

and the related subjects in this work. 

Chapter 3 describes the simulator itself and discusses the procedures involved 

in simulating LD structure.  Several selected models used in simulating LD designs 

were also described.  

Chapters 4, 5, 6 and 7   present the outcome of this research work.  The LD 

performance on different design structures and various parameters variation are 

presented, analyzed and discussed. The results of these performance properties of our 

study will be compared with some of experimental work obtained from other 

researchers.  

Chapter 8 will conclude the outcome in this study summarily.  A few 

recommendations for further works also will be proposed in this chapter. 



 13

CHAPTER 2 
 

THEORY 
 

2.1 Introduction  
 

This chapter explains the semiconductor laser diode theory and operation 

followed with the basic properties of Indium Gallium Nitride (InGaN) laser diode 

and its related materials generally. The discussions on several problems in LD device 

semiconductor and several approaches to overcome those problems in improving the 

LD performance are also presented. The basic principle of carriers in semiconductor 

devices is also explained. This principle describes the carriers’ behavior and 

movement in LD device.  

 

2.2 Background: Semiconductor Laser Theory and Operation  

There exists a wealth of literature covering the various types of 

semiconductor laser, the physics of their operation, and their implementations and 

applications. Whilst the concepts described in this section are readily available in any 

of the aforementioned texts, the fundamental principles of laser action and an 

overview of the theory behind semiconductor laser diodes are provided in this 

chapter for convenience and completeness (Bhattacharya, 1997; Agrawal, 1993).  

Specific details of some of the mathematical equations upon which the 

electrical semiconductor models are based will be provided. The concept of the 

semiconductor laser is based on the emission of a photon when a hole and electron 

recombine. Taking the case of a non-degenerate semiconductor at 0 K, all of the 

electrons lie on the valence band whilst the conduction band is empty. Pumping the 

semiconductor raises some electrons to the conduction band where they rapidly 

distribute themselves into the lowest available energy levels within the band. 
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Electrons in the valence band occupy the lowest energy levels there, pushing the 

holes to the top of the valence band. 

 

2.2.1 Absorption 
 

The processes that can occur in semiconductor lasers are shown in Fig. 2.1. 

Coordinating these processes are vital to the operation of a semiconductor laser diode 

(LD). In the first process, an incident photon excites a valence band electron into the 

conduction band. However, not all of the photons are absorbed. The absorption is 

governed by an absorption rate of the form, 

 

)().21.(1.12 ωρ hppBabsR −=                                                                             (2.1) 
 
where p1 and p2 are the occupation probabilities in the valence and conduction bands 

respectively, B12 is the Einstein coefficient for absorption, and ρ is the density of 

photons equal to the transition energy. 

 

 

 
 

Figure 2.1: The mechanism of the spontaneous absorption and emission.   
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2.2.2 Spontaneous emission  
 

In LDs, light is first produced by spontaneous emission as shown in Fig. 2.1, 

where electrons in the conduction band spontaneously recombine with holes in the 

valence band to emit photons of equal energy (Thompson, 1980; Sands, 2004): 

 

 νhEEE gholeelectron ==−                                                                                         (2.2) 

 
 This initial emission (below threshold) then induces stimulated emission. LEDs, on 

the other, rely solely on spontaneous emission for device performance. All electron-

hole pairs are independent. Hence, all photons are incoherent wave trains emitted in 

all directions.  The rate of spontaneous emission, R, is proportional to the product of 

electron and hole concentrations. 

 

Bnp
dt
dp

dt
dnR =−=−=                                                                                              (2.3) 

 
Here, n  is the concentration of free electrons p  is the concentration of holes, and B 

is the bimolecular recombination coefficient. This can also be expressed in terms of 

the equilibrium carrier concentrations ( 0n , 0p ) (Svelte, 1998). 

 
)()00( tnpnBR ∆+=                                                                                              (2.4) 

 
The rate of change in concentration, )( tn∆ , is an exponential with a 

characteristic rise time equal to the carrier lifetime τ , and 0n∆  is the steady state 

excess electron concentration. 

 

)00(
1,)00(

0)(
npnB

tpnBentn
∆++

=+−∆=∆ τ                                                (2.5) 
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2.2.3 Stimulated emission in semiconductors 
 

If an incident photon “couples” with an electron it can cause the electron to 

fall back into the valence band. This “coupling” is somewhat analogous to 

sympathetic resonance in mechanical or acoustical systems where an incoming 

photon (emitted via spontaneous emissions) resonantly couples with an energized 

electron of the same frequency and phase as shown in Fig. 2.2. As the electron falls 

to the valence band it emits a photon. It is vital to the operation of LDs that the 

emitted photon is coherent with the incident photon; it has the same direction and 

phase. The rate of this stimulated emission is dictated by a process completely 

analogous to stimulated absorption, only this time there is a stimulated emission 

constant B21 which relates to transitions from the conduction to the valence band 

(Svelto, 1998; Siegman, 1971). 

 
)()21(121 ωρ hPPBemissionR −=                                                                            (2.6) 

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2: Process of stimulated recombination in laser diode. 

 
 

EC

EV 
ћω

An electron-hole pair and 
another photon. 

Recombination at the energy ћω
is stimulated by the photon of the 
same energy ћω. 

Two resulting photons are 
coherent: the same energy, phase 
and propagation direction.  
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These processes are really just reverses of each other; stimulated emission is 

the reverse of stimulated absorption, with the added advantage that stimulated 

emission multiplies the number of photons and thus provides gain. Probability of 

stimulated emission is proportional to the density of excess electrons and holes, and 

to the density of photons. Each time the number of photons is increased (amplified) 

we provide positive feedbacks that make the stimulated emission to become self 

supporting. The self supporting stimulated emission is the principle of a laser. 

 

2.2.4 Einstein relations and population inversion 
 

All the three of the processes described above (absorption, spontaneous 

emission, and stimulated emission) are related. This interrelation helps us understand 

the process of lasing.  Consider a system with two energy levels E1 and E2. In 

equilibrium, the rate of upward transitions must equal the rate of downward 

transitions, and the populations of each energy level (N1, N2) are related by 

Boltzmann statistics: 
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where gD1 and gD2 are the degeneracies of the levels (similar to density of states NC 

and NV) and indicate the number of subenergy levels within E1 and E2. 

 We then define 21τ  as the lifetime of carriers in the conduction band before 

spontaneous emission takes place, with  1
2121
−=τA  being the Einstein coefficient for 

spontaneous emission. Referring to equations (2.1) and (2.6), we can state that under 

thermal equilibrium (Sands, 2004; Bhattacharya, 1997). 
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where equations (2.8) and (2.9) are known as the Einstein Relations. If the 

degeneracies are equal 21 DD gg = , then B12=B21 where the light velocity in free space 

C  is replaced by the light velocity in a crystal 
Rn

C  . Examining equation (2.7), we 

note that in order for sustained stimulation emission to occur, N2 must be greater than 

N1. Otherwise, the energized electrons with which incoming photons resonate will be 

depleted from the conduction band. N2>N1 defines population inversion, and if we 

assume that rτ = 21τ , then A21 = 
1−

rτ  and, 
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λ

τπ 88

3

33

3

21 ==                                                                          (2.10) 

 

2.3 Gain, Losses, and the Lasing Condition 
 

Population inversion enables lasing action and optical gain in a 

semiconductor, and this population inversion is achieved by creating nonequilibrium 

populations of the carriers in the bands. These nonequilibrium populations result 

from minority carriers injected across a forward-biased junction. In a lasing medium, 

stimulated downward transitions (Eq. 2.6) represent gain, and stimulated upward 

transitions (Eq. 2.1) represent loss. The luminescence from a semiconductor 

represents its spontaneous emission spectrum, which has a definite width 

(Bhattacharya, 1997).  
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For lasing to occur, the gain must be greater than or equal to the loss at a 

photon energy within this spectrum (generally the peak wavelength). Because the 

laser is built in a resonant cavity, a significant photon density arises in a supported 

cavity mode. This spontaneous emission induces stimulated emission, and emitted 

photons stimulate even further recombination in a chain-reaction fashion. Since the 

photon density is highest at the peak energy, they stimulate the most transitions; this 

means that the output spectrum grows and narrows simultaneously. This is the onset 

of superradiance. Thus the two conditions for lasing are:  First the gain must be at 

least equal to the losses in the medium. Second the radiation must be coherent. The 

directionality and coherence of emitted light is maintained by constructing the laser 

in a Fabry-Perot cavity waveguide. The electric and magnetic fields that dictate 

waveguide modes operate according to the following wave equations (derived from 

Maxwell’s equations (Bhattacharya, 1997) : 

 
00

22 =+∆ EE rεµεω  
                                                                                                                               (2.11) 

00
22 =+∆ HH rεµεω  

 
For the light to be guided through the desired area of the material (i.e., the 

active regions), it is necessary to confine the waveguide modes using cladding layers. 

The waveguide design determines how the light will be guided, and the cladding 

layers determine how it will be confined. The confinement factor Γ  is the percentage 

of guided light that “fits” within the active layer. We can then define a modal gain 

which is equal to the threshold gain thg multiplied by the confinement factorΓ . This 

modal gain is a measure of the power transferred from the active region into the 

propagating mode (Bhattacharya, 1997). 
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where iα  is the internal loss in the medium, and mα  is the loss due to the mirrors 

or facets (with reflectivities R1 and R2) that define the cavity length L .  

The gain is amplified since the light being reflected between these two facets 

is in a gain medium. Eq. 2.12 defines the threshold condition for lasing. The value of 

n which Eq. 2.12 is true is the threshold carrier concentration thn , where 
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where md  is the thickness of the mode volume, and d  is the thickness of the active 

layer. We can then also define the population inversion necessary to satisfy the lasing 

condition, 
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We then define a threshold current density by, 
 
 

)( thsp
r

th
th nqdRqdnJ ==

τ                                                                          (2.15) 

 
where spR  is the spontaneous emission rate per unit volume and d is the thickness of 

the active region. It will be seen that one tries to minimize thJ  for the most efficient 

LD operation. 
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2.4 Transparency Condition 
 

In a semiconductor LD, an interesting effect occurs just prior to stimulated 

emission: there exists an injected carrier density nomn  that makes the medium 

transparent. At this point, emission and absorption are balanced and the gain equals 

zero. Therefore, any incident photons cannot get absorbed and simply pass through 

the medium, rendering it transparent. It follows that there is a current density 

associated with this carrier injection; this is the transparency current density 0J  

(Bhattacharya, 1997): 

 

r
nomqdn

J
τ

=0                                                                                                      (2.16) 

 
where nomn  is generally on the order of thn ,  d is the thickness of the active region, q 

electon charge and rτ  is the radiative life time of the carriers. We see explicitly that 

the threshold and transparency currents density are related by, 

 

0
.

J
g

J th
th α
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=                                                                                                         (2.17) 

 
where α  is the total loss.  

 

2.5 Differential Gain, Internal Efficiency, External Quantum Efficiency, 
      Differential Efficiency, and Output Power 
 
The differential gain of the medium is defined as follows (Sands, 2004): 
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The internal efficiency intη  of an LED is defined as the ratio of photons emitted 

from the active region to electrons injected into the LED. It is a function of the 

radiative rτ  and nonradiative nrτ  carrier lifetimes. 
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In  GaN, the radiative lifetime is much shorter than the nonradiative lifetime, 

so most carriers can recombine to emit photons before encountering traps. For most 

calculations in mature material systems, it is acceptable to approximate 1int ≈η . 

Further, we can generally neglect nrτ  since it is typically several orders of 

magnitude longer than rτ . The external quantum efficiency extη  of a device is defined 

as number of photons emitted into free space per second to the number of electrons 

injected into device per second and given in Eq. (2.20) below. 

 

extractioninjectionext qI
hP ηηηνη int/

/
==                                                         (2.20) 

 
where the injection efficiency is typically 100%, Ρ  is the laser  power  and  I  is the 

operating current .The differential efficiency is defined by (Bhattacharya, 1997), 
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where  iα  is the internal loss R  is the mirrors  reflectivity . Finally, the particular 

importance to the quality of a laser diode is  the amount of power it produces.  
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This output power is given by, 
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where A is the LD contact stripe area and J  is the device threshold current density, 

L is the laser diode  cavity length and 21 , RR  are the reflectivity of left and right  

laser diode mirrors.  

 

2.6 Semiconductor Laser Structures 
 

All of the conditions described above to achieve lasing are accomplished by 

forward biasing the device. This injects carriers into the active region, where they 

recombine and begin the process of establishing a population inversion, thus leading 

to stimulated emission. Fig. 2.3 shows how the cleaved facets of the device act as 

mirrors. This establishes the Fabry-Perot resonant cavity which resonates at a 

frequency corresponding to the energy of the stimulated emission             

(Mroziewicz et al., 1991) 

A Fabry-Perot cavity is required to provide the necessary optical feedback so 

that laser oscillation can occur.  It can be established by polishing the end facets of 

the junction diode (so that they act as mirrors) and also by roughening the side edges 

to prevent leakage of light from the sides of the device (Vukovic, 2000). This 

structure is known as a homojunction laser. As a result of the difference in the 

refractive index and the difference in bandgap energies of the materials used, the 

heterojunction structure can considerably increase device efficiency. By using a 

heterojunction of either side of the active layer (Double Heterojunction (DH) 
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structure) both optical and carrier confinement are improved. The DH provides for 

optical confinement perpendicular to the junction, but confinement within the active 

layer is also desirable. The use of a stripe in the laser structure allows for optical 

confinement parallel to the active layer. The stripe essentially acts as a guiding 

mechanism by limiting current spread over the active layer. This is achieved by 

creating an area of high resistance over the region of the active layer in which lasing 

is to be suppressed which is a current blocking layer. The efficiency of the blocking 

layer will depend on its geometry and the current spread. 

For a wave to exist within the cavity (of length L ), it must be of an integer 

number of half wavelengths in length 2/λnL= , whereλ  is the wavelength of the 

light in the material. The spacing between the modes is given by Lk /2π=∆ . 

Given that λ>>L  there will be a large number of modes within the cavity and they 

will be closely spaced. Below threshold the emission of photons comes largely from 

spontaneous emission. 

 

 

 
Figure 2.3: A schematic description of a Fabry-Perot resonant  

        cavity  with  reflecting  facets on  each  end. 
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