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SISTEM RENIN ANGIOTENSIN DAN SISTEM SARAF SIMPATETIK DALAM 
PERKEMBANGAN TEKANAN BERLEBIHAN HIPERTROFI KARDIAK DAN 

PERANAN ADRENOSEPTOR SUBJENIS α1 DALAM HIPERTROFI 
VENTRIKEL KIRI 

 
 

ABSTRAK 
 
 

Hipertrofi ventrikel kiri (LVH) telah dikenal pasti sebagai faktor penyebab tunggal bagi 

penyakit arteri koronari, kematian mengejut, lumpuh dan kegagalan jantung. Kadar 

pertambahan penyakit hipertrofi ventrikel kiri bergabungan dengan hipertensi secara 

puratanya adalah sebanyak 40%. Oleh itu, pencegahan atau kemerosotan bagi LVH 

menjadi sasaran rawatan sama ada secara farmakologi, mekanikal, pembedahan atau 

manipulasi genetik. Tesis ini membincangkan tentang perkembangan LVH yang 

mengarah kepada kegagalan jantung dengan penekanan terhadap penglibatan sistem 

saraf simpatetik (SNS) dan sistem renin angiotensin (RAS). Faktor-faktor yang 

menyebabkan LVH yang boleh membawa kepada kegagalan jantung termasuklah 

lebihan mekanikal, pertambahan tekanan oksidatif, pertambahan penghasilan spesis 

oksigen yang reaktif (ROS), perubahan neurohormonal dan kecacatan aktiviti nitrogen 

oksida synthase (NOS). Perubahan neurohormonal yang berlaku semasa  

pengubahsuaian kardiak adalah disebabkan oleh rangsangan adrenergik α dan β, 

angiotensin, endotelin, dan faktor nekrosis tumor α. Peningkatan tahap angiotensinogen, 

ACE, ANGII dan mRNA reseptor ANGI yang telah ditunjukkan, mencadangkan aktiviti 

RAS yang berlebihan di dalam model kajan LVH. Selain daripada itu, penyekatan 

aktiviti RAS telah memberi faedah ke atas pertunjukan kardiak malah ke atas kadar 

penyakit dan kematian. Noradrenalin adalah faktor pertumbuhan yang sangat penting 

untuk kardiomiosit dan ia telah dicadangkan mengandungi kesan langsung ke atas 
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kardiomiosit tanpa mempengaruhi kesan selepas pengepaman darah masuk ke jantung 

(afterload). Dengan latar belakang ini, kajian ini telah diaturkan untuk menjelaskan 

sumbangan SNS dan RAS di peringkat vascular periferi dan saluran darah berintangan 

ginjal. Kajian ini telah dibahagikan kepada 3 bahagian dengan objektif penyelidikan 

yang berbeza dalam mencapai tujuan yang satu. Eksperimen vasopressor telah 

dijalankan untuk mengenali peranan adrenoseptor α dan reseptor AT1 serta 

mengenalpasti interaksi antara RAS dan SNS dalam vaskulatur periferi. Untuk 

mengetahui perkembangan LVH pada sela masa tertentu, beberapa eksperimen telah 

dijalankan dan adrenoseptor intrarenal dan AT1 telah dikaji melalui eksperimen yang 

telah dirancang secara spesifik untuk menyelidik reseptor α1 dan subjenisnya dalam 

vaskulatur ginjal dan buah pinggang. Dalam vaskulatur periferi, reseptor AT1 dan 

adrenoseptor α1  telah terlihat mengandungi mekanisma tindak balas yang kompleks di 

mana secara keseluruhannya RAS bertindak balas positif terhadap SNS dengan 

beberapa pengecualian. Selepas stenosis aorta, fungsi ventrikel kiri telah dimodulasi 

oleh SNS dan RAS. Fasa pertama terdiri daripada disfungsi sistolik dan kemudian 

diikuti oleh disfungsi diastolik. Peranan SNS telah dipertingkatkan dalam 

pengubahsuaian fungsi jantung semasa LVH dan antagonism SNS telah mengarah 

kepada fungsi ventrikel kiri yang lebih baik. Pada peringkat saluran darah berintangan 

ginjal, pelbagai perubahan subjenis α1 adrenoseptor telah dilihat yang mana telah 

menjana tindak balas yang kompleks terhadap reseptor AT1 di dalam ginjal. Peranan 

adrenoseptor subjenis α1D seolah-olah telah mendapat kepentingan asas dengan sedikit 

perubahan dalam peranan adrenoseptor α1A dan α1D.             
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RENIN ANGIOTENSIN SYSTEM & SYMPATHETIC NERVOUS SYSTEM IN 
THE PROGRESSION OF PRESSURE OVERLOAD CARDIAC 

HYPERTROPHY AND THE ROLE OF α1 ADRENOCEPTOR SUBTYPES IN 
THE CONTROL OF RENAL HAEMODYNAMICS IN LEFT VENTRICULAR 

HYPERTROPHY 
 
 

ABSTRACT 
 

 
Left ventricular hypertrophy (LVH) has been identified as an independent risk factor in 

coronary artery disease, sudden death, stroke and heart failure. The prevalence of LVH 

in patients with essential hypertension has been found to be 40% on average. Therefore, 

prevention and/or regression of LVH is a major therapeutic goal whether achieved by 

pharmacologic, mechanical, surgical or genetic means. This thesis discusses the 

progression of LVH that leads to heart failure with an emphasis on the involvement of 

sympathetic nervous (SNS) and the renin angiotensin systems (RAS) The pathogenesis 

of LVH leading to a failing heart might include mechanical overload, increased 

oxidative stress, increased production of reactive oxygen species (ROS), neurohormonal 

changes and impaired nitric oxide synthase activity. The neurohormonal changes that 

occur during this cardiac remodeling are caused by α and β adrenergic stimulation, 

angiotensin, endothelin and tumor necrosis factor α. Increased levels of 

angiotensinogen, ACE, ANGII and ANGI receptor mRNA have been shown which 

suggests an overactive RAS in experimental models of LVH. Moreover, inhibition of 

RAS has been shown to be of benefit for cardiac performance as well as morbidity and 

mortality. Noradrenaline is a potent growth factor for cardiomyocytes and it has been 

postulated to have a direct effect on cardiomyocytes without affecting afterload. With 

this background, this study sets out to elucidate the contribution of SNS and RAS at 
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peripheral vasculature and renal resistance vessel level. The complete study was divided 

into three parts with different experiments aimed to achieve individual objectives. The 

vasopressor experiments were carried out to identify the role of α adrenoceptors and 

AT1 receptors and identify the interaction of RAS and SNS in the peripheral 

vasculature. To study the progression of LVH over a period of time some experiments 

were done. Thirdly, intra renal adrenoceptors and AT1 were studied in an experiment 

which was designed specifically to study the role of α1 adrenoceptors and their subtypes 

in the renal vasculature and kidney. It was found that in peripheral vasculature AT1 

receptors and α1 adrenoceptors have a complex feedback mechanism whereby in 

general RAS had a positive feedback on the SNS with a few exceptions. After aortic 

stenosis the left ventricular function is greatly modulated by both SNS and RAS. The 

initial phase constitutes of systolic dysfunction which is followed by diastolic 

dysfunction in later stage. The role of SNS is greatly enhanced in the modulation of 

cardiac function during LVH and antagonism of SNS leads to improved left ventricular 

function. At the renal resistance vessels, a multiple subtype shift of α1 adrenoceptor 

subtypes was observed which generated a complex feedback on the renal AT1 receptors. 

The role of α1D adrenoceptor subtype seemed to have gained functional importance in 

LVH with a minimal altered role of α1A and α1B adrenoceptors. 
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CHAPTER 1 
 

INTRODUCTION 
 
 Heart failure is one of the leading causes of cardiovascular morbidity and 

mortality in the modern age. About 60-70% of the patients presented with congestive 

heart failure (CHF) have left ventricular systolic dysfunction. Rest of the patients who 

preserve left ventricular ejection fraction (LVEF) exhibit left ventricular diastolic 

dysfunction (Vasan et al., 1995).  

  

Heart failure can be defined as a clinical syndrome caused by an abnormality of 

the heart and recognized characteristic patterns of haemodynamic, renal, neural and 

hormonal responses accompanied by structural alterations of the ventricles of heart. 

Reports from the Framingham study suggested a 6-fold increased risk in overall 

mortality in individuals with definite ECG-LVH and 45% deaths due to cardiovascular 

events in these patients (Alan et al., 2006). Moreover, left ventricular hypertrophy 

(LVH) has been identified as an independent risk factor for coronary artery disease, 

sudden death, stroke and also heart failure (Elieser, 1994; Alan et al., 2006). 

  

In the US, it has been estimated that there are 550,000 new cases of CHF every 

year and approximately 4,800,000 Americans are currently diagnosed to have 

congestive heart failure. After the age of 65 incidence of CHF has approached ten per 

1,000 population (1%) in the US (Wayne et al., 2007). CHF patients are believed to 

have a 5 year mortality of approximately 50% (National Heart, Lung & Blood Institute 

CHF fact sheet, 1996) with roughly 20% dying in the first year (Wayne et al., 2007).  

 1



Myocardial infarction disables 22% males and 46% females within 6 years of 

diagnosis of CHF. 80% of men, while 70% of women under the age of 65 with CHF die 

within 8 years. After CHF is diagnosed, survival is poorer in men than in women, but 

fewer than 15% of women survive more than 8-12 years. Their one-year mortality rate 

is higher with one in five dying. In USA, CHF deaths have increased by 145% between 

1979 and 1999.  

  

The prevalence of LVH in patients with essential hypertension has been found to 

be 40% on average (Alexander et al., 2003). Therefore, prevention and/or regression of 

LVH are major therapeutic goals whether achieved by pharmacologic, mechanical, 

surgical or genetic means. 

  

Here we will discuss the progression of LVH that leads to heart failure with an 

emphasis on the involvement of sympathetic nervous and the renin angiotensin systems. 

 

1.1  Anatomy of the neurons & the neural bed 

The system of cells, tissues and organs that regulate the body’s response to 

internal and external stimuli, through electrical and/or chemical transmission, is known 

as the nervous system (William et al., 2001). It constitutes of brain, spinal cord, nerves, 

ganglia and receptors which harmonize the transmission, reception and response to 

these signals in order to capacitate the body to function.  
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Neurons are the building blocks of the nervous system and constitute of a cell 

body, the dendrites and axon. The cell body contains the nucleus and performs most of 

the functions as a somatic cell except that after maturation most of the neuronal cells 

loose the ability to undergo cell division. Dendrites are small thread like structures 

originating from the cell body and function to receive inputs from the surroundings. 

They may also form junctions with the surrounding neurons to form synapse(s). A pre-

synaptic neuron may release a chemical transmitter called neurotransmitter to 

communicate with the dendrite of a post-synaptic neuron cell body. Axon or a nerve 

fiber is usually elongated and unlike dendrite, it functions to transmit electrical signals 

in the form of action potential, from the cell body to either another synapse or to an 

effector organ. Axons may also branch and thus form collaterals. The beginning end of 

an axon is known as hillock and the terminal end of the axon is called terminal. Axon 

hillock, in most of the neurons, is specialized in initiating the action potential while 

terminal is specialized to release a neurotransmitter (William et al., 2001). 

 

In general the nervous system can be divided into two main subcategories; 

central nervous system (CNS) and the peripheral nervous system (PNS).  

 

1.1.1 Central Nervous System 

The central nervous system (CNS) consists of brain and spinal cord. These two 

organs probably consist of the most delicate tissues in our body. Pertaining to their 

importance they are well protected in our body by three different substances; bone, 

connective tissue and fluid. The outer most layer that protects this delicate tissue is 
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cranium (skull). It surrounds the brain and also constitutes the bony vertebral column 

which surrounds the spinal cord. Between the bone and the nervous tissue are three 

layers of membranes called meninges (dura mater, arachnoids mater and pia mater). In 

between the archnoid mater and the pia mater, the space called subarachnoid space, is 

filled with a fluid called cerebrospinal fluid. The cerebrospinal fluid is a clear watery 

fluid that bathes the CNS and provides a cushion against sudden jerks. It is similar but 

not identical to the plasma in constitution (William et al., 2001). The structure of a 

typical neuron is shown in Fig. 1.1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4



 
 
 
 
 
 
 
 
 
 

 
Figure 1.1. Structure of a typical neuron 
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1.1.2 Peripheral Nervous System 

Peripheral nervous system (PNS) consists of nerve cells that enable 

communication between the CNS and the effector organs throughout the body. The 

peripheral nervous system can be subdivided into two divisions; Afferent PNS and 

Efferent PNS.  
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Figure 1.2 Organization of the nervous system  
[Adapted from William et al., 2001] 

 
 

Afferent division of the PNS consists of neurons that transmit electrical signals 

from organs to the CNS. Information from the visceral organs is transmitted to the CNS 

via these neurons. This information is in regard to blood pressure, hunger, thirst etc 

while the sensory neurons transmit the information related to the external stimuli such 

as vision, touch, taste etc. 
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1.1.2.a Autonomic nervous system 

Autonomic nervous system (ANS) regulates organs of the body that are not 

under voluntary control. It regulates the function of internal organs, glands, vessels, 

cardiac rhythm, kidney function etc. The ANS receives input from parts of the CNS that 

process stimuli from the body and the external environment. These parts of CNS 

include the hypothalamus, nucleus of the solitary tract, reticular formation, amygdala, 

hippocampus, and olfactory cortex. 

 

ANS can be divided into two groups; sympathetic nervous system and 

parasympathetic nervous system. Both sympathetic and parasympathetic systems 

consist of two sets of nerve bodies. The pre-ganglionic body is in CNS while the post-

ganglionic body is usually outside the CNS and these post-ganglionic efferent fibers 

lead to effector organs. 

  

The pre-ganglionic fibers of the sympathetic nervous system are located in the 

inter-mediolateral horn of the spinal cord. The ganglia are usually within the vertebral 

column and long post-ganglionic fibers innervate the effector organs, usually vascular 

smooth muscles, viscera, lungs, scalp, lachrymal and salivary glands, smooth muscles 

of viscera and glands, and ocular muscles. The sympathetic nervous system is catabolic 

in nature and exhibits flight and fright responses. Thus, sympathetic output increases 

heart rate and contractility, bronchodilation, hepatic glycogenolysis and glucose release 

and muscular strength. Less immediately life-preserving functions (e.g. digestion, renal 

filtration) are decreased. Most post-ganglionic sympathetic fibers release noradrenaline 
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and therefore sometimes termed as noradrenergic fibers; i.e., they act by releasing 

noradrenaline (NA).  

 

The pre-ganglionic fibers of the parasympathetic system are located in the brain 

stem and sacral portion of the spinal cord. Pre-ganglionic fibers exit the brain stem in 

the form of cranial (vagus) nerves. The vagus nerve contains most of the 

parasympathetic fibers. Parasympathetic ganglia are found within the effector organ and 

post-ganglionic fibers are usually very small in length. The parasympathetic nervous 

system is anabolic; it conserves and restores, therefore, exhibits rest and digest 

responses. GI secretions and motility (including evacuation) are stimulated, heart rate is 

slowed, and BP decreases.  

 

Erection is a parasympathetic function while ejaculation is a sympathetic 

function. 

 

1.1.2.b Somatic nervous system 

 Somatic nervous system consists of nerve cells called motor neurons which 

control the function of skeletal muscles. These nerves constitute the voluntary control of 

organs. 

 

Here we will focus more on the contribution of sympathetic nervous system and 

renin angiotensin system to LVH progression and thus will discuss them in detail. 
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1.2  Sympathetic nervous system 

The autonomic nervous system (ANS) plays an important role in both healthy 

and diseased states. It regulates the function of all tissues and organs innervated by 

sympathetic nerves, except the skeletal muscles. ANS is independent in its activities and 

is not under voluntary control. It consists of three components; noradrenergic nerves, 

cholinergic nerves and the enteric system. Adrenergic nervous system (sympathetic 

nervous system) is physiologically the most important component of ANS and 

innervates all the vital organs of the body. The cholinergic nerves constitute the 

parasympathetic nervous system. The enteric system regulates the intestinal functions 

and projects from sympathetic and parasympathetic nerves (Furness et al., 1980, Vizi et 

al., 1991) 

  

Here we will emphasize more on the sympathetic nervous system and the role of 

its components in the modulation of haemodynamics.  

  

Sympathetic nervous system consists of a complex relay system consisting of 

nerves, neurotransmitters and receptors. Following are the components that are vital to 

the sympathetic nervous system:  

• Pre-ganglionic sympathetic nerves 

• Post-ganglionic sympathetic nerves 

• Catecholamines 

• Adrenal Medulla 

• Adrenergic receptors 
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 Sympathetic nerves originate in the brain stem and give rise to pre-ganglionic 

efferent nerve fibers that leave the CNS in the thoraco-lumbar region of spinal cord. 

Most of these pre-ganglionic sympathetic nerves form synapses with post-ganglionic 

sympathetic nerves in the para-vetebral chains located on either side of the spinal 

column. Remaining sympathetic ganglia are located in the pre-vertebral ganglia which 

lie in front of the vertebrae. Post-ganglionic sympathetic nerves transmit the signals to 

the innervated tissues by the release of NA and thereby activating the adrenergic 

receptors in the effector tissue/organ and thus producing its actions (Ilia et al., 2000). 

  

The major paracrine factor released by adrenal medulla is adrenaline and to a 

lesser extent noradrenaline (NA). The chromaffin cells of the adrenal medulla are 

innervated by pre-ganglionic sympathetic nerve terminals which uses acetylcholine as 

the neurotransmitter (Ilia et al., 2000). Upon activation of the chromaffin cells, 

adrenaline and noradrenaline are produced. Therefore, we can say that adrenaline and 

noradrenaline are the principle end products of the sympathetic nervous system. 

  

Adrenaline and noradrenaline are catecholamines. They are synthesized from 

tyrosine which is transported into the noradrenergic varicosities by a sodium dependent 

carrier, where tyrosine is converted to di hydroxy phenylalanine (DOPA) by an enzyme 

tyrosine hydroxylase and is finally hydroxylysed to dopamine and a carrier which can 

transport dopamine into the vesicles. Dopamine is converted to NA in the vesicles by 

dopamine bihydroxylase (DBH). In the adrenal medulla, NA is further converted to 

adrenaline. 
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The nerve impulse carried by the sympathetic nerves exerts its actions on the 

effectors through activation of certain receptors in the effector organs. The post-

ganglionic sympathetic nerve terminals release NA to activate these receptors (DiBona, 

2000). Pertaining to the fact that primarily NA and adrenaline activate these receptors, 

they are referred to as adrenergic receptors.  

 

1.2.1 Adrenergic receptors 

 All adrenergic receptors are G-protein coupled receptors. Each major type has 

an affinity for a specific G protein. α1 adrenoceptors show preference for Gq, α2 

adrenoceptors link with Gi while β2 adrenoceptors couple with Gs (Shelli et al., 2004). 

These receptors exhibit a relatively rapid response to agonists. Upon exposure to 

agonists, responses depend on the desensitized state of the receptor (Shelli et al., 2004). 

There are multiple mechanisms involved in the desensitization process. A relatively 

rapid route to desensitization is through phosphorylation of the receptor by both G 

protein receptor kinase and by signaling kinases such as protein kinase A or protein 

kinase C (Luttrell et al., 2002). A slower process to desensitized state of the 

adrenoceptors might exhibit in the form of receptor endocytosis / internalization and 

degradation, which ultimately leads to down regulation of the receptors (Taso et al., 

2001).  

  

Adrenergic receptors are membrane bound receptors in nature and are present in 

cells of both peripheral tissues and CNS. Adrenoceptors mediate a variety of actions 

and therefore have been in the limelight of research for several decades. Ahlquist first 
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classified them as alpha and beta adrenoreceptors in 1948 (Ahlquist., 1948). 

Adrenoceptors excite on exposure to both adrenaline and noradrenaline. Both 

adrenaline and noradrenaline play an important role in the control of blood pressure 

(BP), myocardial contractile rate and force as well as metabolism. Adrenoceptors have 

affinity for many synthetic drugs and with the newer pharmacological tools, scientists 

have been able to identify and subdivide the adrenoceptors. Drugs interacting with 

subtypes have proven useful in a variety of diseases, involving most of the vital organs 

in the body. Some of the pathophysiological conditions in which adrenoceptors have 

been targeted and found to be of use include hypertension, angina pectoris, CHF, 

cardiac arrhythmia and asthma (David et al., 1994).  

 

1.2.1.1 Classification, characterization & distribution 

In early 20th century, Dale reported that certain responses to adrenoceptor 

stimulation, such as the vasopressor action of adrenaline, are insensitive to ergot 

alkaloids that are classical adrenoceptor antagonists. This opened up an exciting new 

avenue for researchers to explore adrenoceptors. Up till then, the focus of adrenoceptor 

classification was based either on “excitatory” or “inhibitory” actions. These qualitative 

approaches of classification were not so helpful and even lead to proposal of different 

neurotransmitters. However, in 1948 Ahlquist’s quantitative approach was based on 

different order of potency of the two different adrenoceptor subtypes. He evaluated 

effects of structurally related natural and synthetic agonists in different tissues. He 

proposed alpha and beta adrenoceptors based on the findings that beta receptors are 

insensitive to blockade by ergot alkaloids (Powell et al., 1957; Moran et al, 1958). In 
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1967, Lands and his colleagues described that there were two subtypes of β receptors. 

They explained that β1 adrenoceptor subtype was equally sensitive to adrenaline and 

NA and that it is the dominant subtype in heart and adipose tissue. Whereas β2 

adrenoceptors were much less sensitive to noradrenaline as compared to adrenaline and 

that they are responsible for relaxation of vascular, uterine and airway smooth muscles 

(Lands et al., 1967 a&b).  

 

 In 1974, Langer presented the classification of α adrenoceptors based on the 

anatomical distribution. Reports started to come in regarding the pharmacological 

differences amongst pre and post junctional α adrenoceptors (Starke et al., 1974). 

Langer suggested that pre junctional α adrenoceptors be named as α2 while post-

junctional as α1. Not much time had passed when a functional subdivision of α 

adrenoceptors was viewed in literature in late 1970’s. These studies used agonists-

antagonists interaction as the basis to oppose anatomical subdivision discussed by 

Langer and other researchers and suggested a classification of adrenoceptors based on 

their function (Berthelsen et al., 1977). These researchers suggested that α1 

adrenoceptors mainly induce excitation while α2 adrenoceptors play a role in inhibition. 

A few years later, Drew and Whiting argued the presence of two distinct types of post 

synaptic α adrenoceptors based on their findings that NA induced vasoconstriction is 

inhibited not only by α1 adrenoceptor antagonists such as prazosin but also with 

yohimbine, a selective α2 antagonist (Drew et al., 1979). These findings lead scientists 

to re-evaluate the way to classify adrenoceptors. In late 1980’s and early 1990’s the 

pharmacological subdivision of α1 and α2 adrenoceptors and their subtypes stirred 
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interest in most scientists. This new classification was based on highly specific agonist 

and antagonist interactions (Ruffolo et al., 1988; Ruffolo et al., 1991). Over the passage 

of time, pharmacological basis of sub classifying adrenoceptors strengthened. Scientists 

agreed that α adrenoceptors that are activated by methoxamine, cirazoline or 

phenylephrine and blocked competitively by low concentration of prazosin, WB-1401 

or corynanthin should be classified as α1 adrenoceptors. Whereas, adrenoceptors 

activated by α-methylnorepinephrine, UK-14, 304, B-HT 920 and/or B-HT 933 and 

blocked by low concentrations of yohimbine, rauwolscine and/or idazoxin be classified 

as α2 adrenoceptors (Ruffolo et al., 1991). 

  

In late 1980’s the advancement in the radio-ligand binding assays, gene 

recombinant technology and development of molecular biology techniques had a major 

impact on adrenoceptor classification. Since then, the presence of several subtypes of α 

and β adrenoceptors have been shown to exist. Sometimes multiple subtypes are 

expressed in a single tissue.  

  

Adrenoceptors have been historically classified into α and β adrenoceptors, 

however, in 1994, David and his co-workers suggested that it is more appropriate to 

classify adrenoceptors into α1, α2 and β adrenoceptors based on differences in affinity to 

pharmacological tools, differences in the second messenger responses and the amino 

acid sequence of these receptors (David et al., 1994). However, in the later studies it 

was shown that there is more than one subtype of β adrenoceptors. These subclasses of 

adrenoceptors are discussed in detail below.   
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1.1.1.2 α adrenoceptors 

 Information regarding modulation of vascular tone through α adrenoceptors 

gained interest by researchers as well as clinicians pertaining to their possible 

manipulation in hypertension. However, what we know about these adrenoceptors today 

is based on their discovery in 1948 by Ahlquist and pioneering work by Langer and his 

co-workers. With the development of selectively binding drugs, these receptors have 

enabled insight into pathological states and their possible treatment. They can be largely 

subdivided into α1 and α2 adrenoceptors. 

 

1.2.1.2.a α1 adrenoceptors 

 α1 adrenoceptors are involved in smooth muscle growth, regulation of blood 

pressure, maintenance of the vascular tone and myocardial contractility (Brodde et al., 

2001; Guimaraes et al., 2001; Koshimizu et al., 2002). A cascade of reactions occurs 

upon stimulation of these receptors, stimulating the activity of Phospholipase C, which 

promotes the hydrolysis of phosphatidylinositol bisphosphate producing inositol 

trisphosphate and diacylglycerol. These molecules act as second messengers mediating 

intracellular Ca2+ release from non-mitochondrial pools and activate protein kinase C 

(Guimaraes et al., 2001). These membrane-bound receptors excite upon coupling with 

both sympathetic neurotransmitters; adrenaline and noradrenaline. Also, each of the α1 

adrenoceptor subtype shows linkage to Gq protein and activates phospholipase C (Shelli 

et al., 2004). 
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With the development in receptor cloning techniques, advancements in 

molecular biology approach and radio-ligand binding assays, α1 adrenoceptors were 

first divided into α1A and α1B subtypes based on relative affinity of these receptors for 5-

MeU, WB-4101 and CEC (Morrow et al., 1986; Han et al., 1987; Gross et al., 1988; 

Hanft et al., 1989 and Boer et al., 1989). These researchers showed that α1A 

adrenoceptors were sensitive to 5-MeU and WB-4101 and insensitive to CEC. They 

also reasoned that α1B adrenoceptors were sensitive to CEC and had a very low affinity 

to 5-MeU and WB-4101. At present researchers discuss at least three sub types of α1 

adrenergic receptors based on a pharmacological classification, namely; α1A, α1B and 

α1D. 

 

1.2.1.2.a.i α1A

 In vitro studies have shown that α1A mRNA is highly expressed in peripheral 

arteries and that up to 90% of total α1 adrenoceptor mRNA is of α1A subtype in 

peripheral vasculature (Guimaraes et al., 2001). Discrepancies exist between the 

knowledge of the expression of these receptors in vitro and their functional implications 

in vivo (Hrometz et al., 1999; Ohmi et al., 1999). It has also been suggested that α1A 

adrenoceptor predominates in 8 different types of rat arteries which had a dense 

innervation of sympathetic nerves (Frank et al., 1998). By inducing chemical 

sympathectomy they also argued that reshuffling of α1A adrenoceptor density might be 

of importance in pathophysiological states with high sympathetic activity. Using 

molecular biology techniques, the presence of another α1 adrenoceptor subtype, termed 

as α1C has been shown to exist (Schwin et al., 1990). In the following years a consensus 
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was reached that α1A/C are the same sub type of alpha adrenoceptor and α1A is to be 

referred to this receptor (Ruffolo et al., 1991). Using binding competition experiments, 

co-expression of α1A and α1B adrenoceptors in rat tail arteries has been shown in intact 

tissue segments and membranes (Tanaka et al., 2004). Recent studies have more clearly 

addressed the functional attributes of these receptors and it has been demonstrated that 

noradrenaline induced contractions in rat tail artery are mediated by both α1A and α1B 

adrenoceptors (Sven et al., 2004). α1A and α1B adrenoceptors have also been shown to 

play a role in the inotropy of mice heart. Using a gene knock out approach, it was 

shown that both α1A and α1B adrenoceptor subtypes play similar roles in exhibiting 

negative inotropy in mouse myocardium. It was also discussed by the same group of 

researchers that the inotropic effects induced by α1 adrenoceptors differ dramatically in 

mouse and rat myocardium (Diana et al., 2002). In humans, α1A and α1B subtypes of 

adrenoceptors have also been shown to be the major expressed and functionally 

important sub types in the sphenous vein (Ming et al., 2001).  

 

1.2.1.2.a.ii α1B

 α1B was probably the first α1 adrenoceptor subtype to be cloned using molecular 

biology techniques. Cotecchia and his fellow workers isolated a clone from a hamster 

vas deferens cell line (DD1MF2), which expressed a protein with a sequence similar to 

that of a G protein coupled receptor (Cotecchia et al., 1988). Upon further analysis and 

expression of this cDNA resulted in a protein with properties consistent with α1B 

adrenoceptor. It had a high affinity for prazosin and a low affinity for phentolamine, 5 

methyl urapidil (5-MeU) and yohimbine. It was also highly sensitive to irreversible 
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inactivation by CEC. Voigt and fellow colleagues identified rat α1B adrenoceptors in 

liver, spleen, heart and cerebral cortex and showed that its pharmacological profile was 

similar to that of hamster (Voigt et al., 1990). In one of the recent studies, it was shown 

that noradrenaline mediates sympathetic neurotransmission in murine mesenteric 

arteries by acting on α1B adrenoceptors and to a lesser extent on α1A adrenoceptors. The 

same experiment also revealed that in DOCA salt hypertensive mice, neurogenic 

constrictions are mediated only by α1B adrenoceptors (Alex et al., 2005). Using α1B 

knock out mice, a definite but minor role of α1B adrenoceptors in the rat tail arteries has 

also been discussed recently (Daley et al., 2002). 

  

1.2.1.2.a.iii α1D 

 In 1991, Lomasney and his fellow researchers reasoned for the presence of 

another α1 adrenoceptor subtype based on their findings from molecular cloning and 

cDNA expression from the rat cerebral cortex. Their theory was fortified by Perez and 

co-workers who called this as α1D adrenergic receptor (Lomasney et al., 1991). They 

found low affinity for the more selective α1A adrenoceptor antagonist 5-MeU and (+) 

niguldipine (Lomasney et al., 1991). It has been established by gene knock out studies 

in mice that α1D play an important role in homeostasis. In vivo studies showed that α1D 

adrenoceptors play an important role in the vascular contractions caused by α1 

adrenoceptor agonists (Piascik et al., 1995; Hussain et al., 2000). Removal of the genes 

regulating α1D reduced the resting blood pressure in mice but α1B knock out mice did not 

show any baseline change in the pressure, suggesting an important role of α1D 

adrenoceptor subtype in maintaining homeostasis. These scientists also suggested that 
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α1D is an important adrenoceptor subtype in the development of secondary hypertension 

in acute renal dysfunction (Chihiro et al., 2005). One of the studies has shown that α1D 

adrenoceptors do not play a role in neurogenic constrictions in both the arteries of sham 

and DOCA hypertensive mice (Alex et al., 2005). Moreover, a recent study suggests 

that in hyper homocysteinemia, the contractile responses to phenylephrine are due to 

impaired modulation performed by α1D adrenoceptor mediated endothelial 

vasorelaxation in rat carotid arteries (Claudia et al., 2006).  

  

At present a consensus has been reached as to the presence of three α1 

adrenoceptors namely; α1A, α1B and α1D. Identifying the subtype of α1 adrenoceptors 

involved in vasoconstrictive responses to sympathomimetic agonists is by no way 

straightforward. In vitro studies suggested that vascular smooth muscles express mixed 

subtypes of α1 adrenoceptor subtypes (Miller et al., 1996). Evidence also suggests that 

responses produced are probably due to the activation of more than one subtype (Zhong 

et al., 1999).  Although mRNA of all three subtypes have been found in several blood 

vessels, the contraction in response to phenylephrine is primarily mediated by α1D and 

secondarily by α1B adrenoceptors (Xu et al., 1997; Hussain et al., 2000). In another 

study Piascik and co-workers made similar observation. They found that expression of 

mRNA for α1 adrenoceptor subtypes, in several arteries of rat, were in order 

α1A>α1B>α1D but only α1B played a functionally important role in mesenteric artery 

(Piascik et al., 1997) whereas α1D adrenoceptor subtype dominated the functional 

importance in aorta, femoral and iliac arteries (Piascik et al., 1997). Some functional 

studies show that in the rat, α1A and α1D adrenoceptor subtypes regulate the larger 
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vessels, while α1B dominate the functional importance in the small resistance vessels 

(Piascik et al., 1997; Gisbert et al., 2000). Some studies have also discussed the 

possibility of junctional versus extra junctional localization of α1 adrenoceptor subtypes. 

However, their physiological significance and differential localization based on the 

functional studies remain to be clinically exploited (Alex et al., 2005).  

 

1.2.1.2.a.iv α1L & α1H

 Another classification of α1 adrenoceptors based on the relative affinity for 

prazosin exists. α1H showed high affinity to prazosin while α1L showed low affinity 

(Holck et al., 1983; Langer et al., 1984; Flavahan et al., 1986). This point of view 

emerged because some scientists observed that two types of α1 adrenoceptors did not 

show any response to noradrenaline induced contractile responses of propranolol in 

prostate and bladder of rat and guinea pig (Cohen et al., 1989). More recently, scientists 

have shown that α1L adrenoceptors mediate the noradrenaline induced contraction in 

mouse prostate (Katherine et al., 2006). These results are in accordance with the 

findings of Ford and co-workers, that the same receptor induces contractile responses in 

human prostate (Ford et al., 1996). 
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1.2.1.2.b α2 adrenoceptors 

 α2 adrenoceptors were first discussed in 1980’s. Pertaining to the non-

availability of selective agonists, as in the case of α1 adrenoceptors, α2 adrenoceptors 

and their subtypes classification was by no means easy. Binding studies initially 

revealed two subtypes of α2 adrenoceptors namely α2A from human platelets and α2B 

from rat kidney, lungs and cerebral cortex (Van Zwieten et al., 1982; McGrath et al., 

1989). To date, three subtypes of α2 adrenoceptors have been shown to exist, namely; 

α2A/D, α2B and α2C (Guimaraes et al., 2001). These findings were initially based on 

radioligand binding assays but later functional studies and molecular approaches 

confirmed their expression as well. The amino acid composition of α2B and α2C are 

similar in mammalian species except for α2A adrenoceptor, which differs slightly. In 

humans the gene coding for α2A, α2B and α2C adrenoceptors are located in chromosomes 

10, 2 and 4 respectively (Regan et al., 1988; Lomasney et al., 1990; Weinshank et al., 

1990). Pharmacologically α adrenoceptor antagonists possess different affinity for α2 

adrenoceptor subtypes (Guimaraes et al., 2001). Prazosin has a relatively higher affinity 

for α2B and α2C adrenoceptors and a very low affinity for α2A/D adrenoceptors. 

Yohimbine and rauwolscine are more selective than phentolamine and idazoxanon for 

α2A in comparison to α2D adrenoceptors.  

   

A vast majority of tissues express more than one subtype of α2 adrenoceptors 

with a few exceptions; α2A in human platelets, α2B in the rat neonatal lung and α2C in 

opossum cells (Bylund et al., 1988). It has been discussed that α2 adrenoceptors are an 

essential part of the neural system regulating cardiovascular function (Ruffalo et al., 
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1991). However, at the post junctional level, α2 adrenoceptors were not found in vitro in 

most of the arterial vessels. Also, in general, the vasoconstrictive effect of α2 

adrenoceptors is restricted in general to the small arteries and arterioles but not in large 

arteries (Guimaraes et al., 2001).   

   

The involvement of α2 adrenoceptors and/or imidazoline receptors in the anti-

hypertensive effects of drugs like clonidine and moxonidine is still controversial. The 

results of one study suggests that the effects of moxonidine acting in the forebrain (renal 

vasodilatation) depends on α1 adrenoceptor activation, while the cardiovascular effects, 

including renal vasodilatation, produced by moxonidine acting in the brainstem depends 

at least partially on the activation of α2 adrenoceptors (Thiego et al., 2007). 

 

1.2.3  β adrenoceptors 

 These are G protein coupled receptors and mediate cardiovascular responses to 

noradrenaline released from sympathetic nerve terminals and to circulating adrenaline. 

Also, β adrenoceptor mediated vasodilatation plays an important physiological role in 

the regulation of vascular tone. Stimulation of peripheral β adrenoceptors lead to 

relaxation of the vascular smooth muscles, thereby controlling the peripheral vascular 

resistance. β adrenoceptors can be stimulated or blocked by many compounds. Such 

compounds are therefore used to treat important and common diseases, such as 

hypertension, asthma, cardiac arrhythmias and ischemic heart disease (Guimaraes et al., 

2001).  
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All β adrenoceptor subtypes signal by coupling to the stimulatory G-protein; Ga. 

This leads to the activation of adenylyl cyclase and release of the second messenger 

cAMP (Dixon et al., 1986; Frielle et al., 1987; Emorine et al., 1989). However, some 

recent studies indicate that, under certain circumstances, β adrenoceptors, particularly 

β3 adrenoceptor, can couple to Gi as well as to Gs (Chaudry et al., 1994; Xiao et al., 

1995; Gauthier et al., 1996, Gauthier et al., 2000). Intracellular events following β-

adrenoceptor activation are also linked to ion transport. It is well known that protein 

kinase A activated by cAMP, phosphorylates L-type Ca2+ channels to facilitate Ca2+ 

entry and thus producing the positive inotropic effect in atria and ventricles, increased 

heart rate in the sino-auricular node, and accelerated conduction in the atrio-ventricular 

node (Guimaraes et al., 2001). Multiple mechanisms control the signaling and density 

of G-protein-coupled receptors (GPCRs). The termination of GPCR signals involves 

binding of proteins to the receptor as a first step. This process is initiated by serine-

threonine phosphorylation of the receptors. This phosphorylation takes place both by 

members of the GPCR kinase family and by second-messenger-activated protein 

kinases A and C. Receptor phosphorylation by GPCR kinase is followed by binding of 

proteins named arrestins. Arrestins bind to the phosphorylated receptor and inhibit 

further G-protein activation (Luttrell et al., 1999). 

  

In late 1960s Lands and coworkers classified β receptors into β1 and β2 (Lands 

et al., 1967 a&b). So far three distinct β adrenoceptor subtypes have been cloned; β1, 

β2, and β3. β1 adrenoceptors mediate +ve chronotropy and ionotropy as well as 

relaxation of the coronary arteries and stimulates the renin release (Bylund et al., 1994). 
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The indigenous catecholamines adrenaline and noradrenalin have an excitatory action 

on both β1 and β2 adrenoceptors whereas propranolol antagonizes them. Three different 

genes located on human chromosomes 10, 5 and 8 encode β1, β2, and β3 respectively. 

The human β3 adrenoceptor has 49% and 51% overall homology at the amino acid level 

with β2 and β1 adrenoceptors, respectively (Emorine et al., 1989; Granneman et al., 

1994).  β3 adrenoceptors are not blocked by propranolol and other conventional β 

adrenoceptor antagonists. However, this subtype of β adrenoceptors can be selectively 

blocked by SR-59230. Moreover, they are activated by selective β3 adrenoceptor 

agonists like BRL 37344 and CL 316243 (Manara et al., 1995; Summers et al., 1997; 

Fischer et al., 1998). 

 

On the basis of many pharmacological and molecular studies, the existence of a 

fourth β adrenoceptor subtype was postulated (Brodde et al., 1999). Studies using more 

selective agonists and antagonists showed that relaxation of vascular smooth muscle 

cells resulted from activation of either β1 or β2 adrenoceptor subtypes and that the 

involvement of each subtype depended on the vascular bed and the species under 

investigation (O’Donnell et al., 1984; Guimaraes et al., 1993; Shen et al., 1994; Shen et 

al 1996; Begonha et al., 1995).  

  

In the heart, maximum +ve ionotropy is obtained by stimulation of only β1 

adrenoceptors (Kaumann et al., 1989; Motomura et al., 1990) while the –ve ionotropy 

induced by β2 adrenoceptors is larger than that induced by the β1 adrenoceptor 

stimulation in the vessels (Guimaraes et al., 1981).  
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