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PERANAN MANGKIN LOGAM TERSOKONG DAN PENCIRIAN 

MANGKIN DALAM PENGURAIAN METANA BERMANGKIN BAGI 

PEMBENTUKAN NANOTIUB KARBON SERAGAM                                

DALAM PROSES SATU LANGKAH 

 

ABSTRAK 

Nanotiub karbon (CNTs) menarik perhatian para saintis di seluruh dunia 

kerana dimensi, kekuatan dan sifat-sifat fizikal yang istimewa membuatkannya satu 

bahan yang unik dengan banyak aplikasi. Pelbagai kaedah sintesis CNTs telah 

dibangunkan dan di antaranya kaedah tumbesaran bermangkin muncul sebagai satu 

kaedah terjamin dalam penghasilan CNTs yang tinggi. Walaubagaimanapun, kaedah 

tumbersaran bermangkin masih menghadapi banyak cabaran dan usaha-usaha 

mengatasi cabaran tersebut merupakan tumpuan utama projek ini. Dalam 

penyelidikan ini, penguraian metana bermangkin telah digunakan untuk 

menghasilkan CNTs. Mangkin-mangkin monologam dan dwilogam turut disediakan 

daripada logam peralihan seperti Cr, Mn, Fe, Co, Ni, Cu, Mo dan Ag, dan disokong 

pada Al2O3, CeO2, CaO, H-ZSM-5, La2O3, MgO, TiO2 dan SiO2. Sifat-sifat mangkin 

yang dibangunkan ini diuji di dalam reaktor lapisan tetap tahan karat pada tekanan 

atmosfera. Pelbagai ujikaji pencirian termasuklah kaedah penurunan berprogramkan 

suhu (TPR), mikroskop elektron imbasan (SEM), mikroskop elektron transmisi 

(TEM), analisis pemetaan graviti haba (TGA), analisis permukaan dan 

kespektroskopan Raman telah dijalankan pada mangkin baru dan mangkin terpakai 

untuk mengetahui ciri-ciri CNTs yang dihasilkan dan kriteria yang diperlukan untuk 

membentuk CNTs yang berkualiti tinggi. Beberapa penemuan penting telah 

dikenalpasti di dalam penyelidikan ini. Di antaranya morfologi filamen karbon boleh 

disediakan secara khusus dengan menetapkan komponen mangkin dan menjalankan 
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tindakbalas dalam keadaan yang bersesuaian. Penemuan ini juga menunjukkan 

bahawa mangkin 8NiO-2CuO/SiO2 dengan kandungan 80 wt% NiO-CuO 

menghasilkan nanofiber karbon (CNFs) dan hidrogen dalam kuantiti yang tinggi, 

iaitu dengan hasil karbon sebanyak 143 gC/g(NiO+CuO) dan hasil hidrogen 2344 mol 

H2/mol (NiO+CuO). Nanotiub karbon berdinding tunggal (SWNTs) dengan 

kememilihan yang tinggi juga dihasilkan oleh mangkin NiO/Al2O3 pada suhu 

tindakbalas serendah 700oC dan CNTs berstruktur Y ditemui pada mangkin 7NiO-

2CuO-1MoOx/SiO2. Penyelidikan ini juga menunjukkan bahawa suhu pengkalsinan 

bagi mangkin adalah faktor penting dalam penentuan hasil dan morfologi CNTs 

terbentuk. Mangkin 8CoOx-2MoOx/Al2O3 yang dikalsinkan pada 700oC telah 

dikenalpasti berupaya menghasilkan nanotiub karbon berdinding lapisan (MWNTs) 

dengan kawalan baik dari segi taburan diameternya, iaitu 9.0 ± 1.4 nm. Kajian 

rawatan awal mangkin juga menunjukkan bahawa mangkin selepas diturunkan oleh 

hidrogen adalah lebih aktif dan suhu penurunan yang optimum adalah pada 550oC. 

Suhu tindakbalas dan tekanan separa metana juga dikenalpasti mempengaruhi hasil 

karbon bagi mangkin 8Co-2Mo/Al2O3 dengan ketara, sebaliknya faktor kuantiti 

mangkin yang digunakan adalah tidak ketara. Program rekabentuk eksperimen (DoE) 

menunjukkan proses yang optimum bagi penguraian metana bermangkin adalah pada 

suhu 761oC, tekanan separa metana 0.75 atm dan kuantiti mangkin 0.4 g dengan hasil 

karbon sebanyak 607%. Kajian kinetik juga menunjukkan bahawa penguraian 

metana bermangkin oleh mangkin 8Co-2Mo/Al2O3 adalah tertib pertama dengan 

tenaga pengaktifan 87 kJ/mol. Analisi seterusnya mendedahkan bahawa penjerapan 

terurai merupakan langkah penentuan kadar bagi penguraian metana oleh mangkin 

8Co-2Mo/Al2O3.  

 



 xxv

ROLE OF METAL SUPPORTED CATALYSTS AND THEIR 

CHARACTERIZATION IN THE CATALYTIC DECOMPOSITION OF 

METHANE FOR THE FORMATION OF UNIFORM CARBON 

NANOTUBES IN A SINGLE STEP PROCESS 

 

ABSTRACT 

Carbon nanotubes (CNTs) have attracted the fancy of many scientists 

worldwide due to their small dimensions, strength and remarkable properties that 

make them a very unique material of a whole range of promising applications. Many 

methods have been proposed to synthesize CNTs of which the catalytic growth 

method appears to be the most promising method for high yield synthesis of CNTs. 

However, there still lie many challenges in the catalytic growth method which is the 

main concern of this project. In this study, catalytic decomposition of methane was 

employed for producing CNTs. A number of monometallic and bimetallic catalysts 

were developed from transition metals, such as Cr, Mn, Fe, Co, Ni, Cu, Mo and Ag, 

on different supports of Al2O3, CeO2, CaO, H-ZSM-5, La2O3, MgO, TiO2 and SiO2. 

The varied catalytic properties of these materials were examined in a vertical fixed-

bed tubular reactor for methane decomposition. Various characterization tests, 

including surface characteristics, temperature-programmed reduction (TPR), X-ray 

diffraction (XRD), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), thermogravimetry analysis (TGA) and Raman spectroscopy, 

were carried out on the fresh and used catalysts in order to comprehend the 

properties of the produced CNTs and the criteria required to grow higher quality 

CNTs in high yield. Many illustrious findings were obtained in this study, one of 

which showed that various types of filamentous carbons could be tailor-made 

through proper designing of the catalyst components at the suitable reaction 
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conditions. It was also found in this study that 8NiO-2CuO/SiO2 catalyst with 80 

wt% of NiO-CuO loading produced carbon nanofibers (CNFs) and hydrogen of the 

highest yields, representing the yields of 143 gC/g(NiO+CuO) and 2344 mol H2/mol 

(NiO+CuO), respectively. Single-walled CNTs (SWNTs) were produced in high 

selectivity over NiO/Al2O3 catalyst at a temperature as low as 700oC and Y-junction 

CNTs were found grown on 7NiO-2CuO-1MoOx/SiO2 catalyst. The study also 

demonstrated that the effect of catalyst calcination temperature on the yield and the 

morphology of the produced CNTs was momentous. In this regard, 8CoOx-

2MoOx/Al2O3 catalyst, calcined at 700oC, grew multi-walled CNTs (MWNTs) with 

the best control of diameter distribution, i.e. 9.0 ± 1.4 nm. The catalyst pretreatment 

study disclosed that the catalyst was more active for the growth of CNTs after being 

reduced by hydrogen and the optimum reduction temperature was found to be 550oC. 

An examination of the process parameters for methane decomposition over reduced 

8Co-2Mo/Al2O3 catalyst showed that reaction temperature and methane partial 

pressure affected significantly the yield of carbon formation, whereas the effect of 

catalyst weight was insignificant. As predicted by Design of Experiment (DoE), the 

optimum process conditions for methane decomposition were found to be a 

temperature of 761oC, methane partial pressure of 0.75 atm and catalyst weight of 

0.4 g, which give the highest carbon yield of 607%. Kinetic studies showed that 

methane decomposition reaction is first order with activation energy of 87 kJ/mol 

over 8Co-2Mo/Al2O3 catalyst. An analysis of possible mechanisms showed that 

dissociative adsorption of methane is the rate-determining step for methane 

decomposition over 8Co-2Mo/Al2O3 catalyst. 
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1  

INTRODUCTION 

 

1.1 Catalysis 

Catalysis involves the modification of the rate of a chemical reaction, usually 

a speeding up of the reaction rate, by addition of a substance, known as “catalyst”. 

According to the definition of Berzelius, a catalyst is a substance that accelerates the 

establishment of a chemical equilibrium without itself being consumed (Berzelius, 

1836; Fogler, 1999). In general, catalysts can be categorized into three major groups, 

representing homogeneous catalysts, heterogeneous catalysts and biocatalysts 

(enzyme).  

Heterogeneous catalysts, in particular supported catalysts, are important both 

from an industrial and a scientific point of view. These catalysts are widely used in 

many chemical processes such as catalytic reforming, hydrotreatment, 

polymerization reaction, hydrocracking, decomposition reaction and hydrogenation. 

Although most production processes using supported catalysts are carried out in a 

large-scale reactor, the reactions that actually take place in the catalysts occur on the 

surface of highly dispersed metal particles. The typical dimensions of these particles 

range from 1 nm to 100 nm (Figure  1.1), which by today’s standard are 

nanomaterials. Knowing that most of the catalysts have nanosized metal components, 

catalysis research and catalyst-based technologies have perhaps been at the heart of 

nanotechnology for many years. Nowadays, nanostructured catalysts receive a great 

demand in the petroleum and chemical processing industries. It is estimated that 

nanostructured catalysts will have an annual impact of USD 100 billion by 2015 

(Roco and Bainbridge, 2001).  

CHAPTER 
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Figure  1.1. Schematic diagram showing the typical catalyst structure used in a 
chemical reactor (Inano, 2007). 

 

1.2 Nanotechnology 

Nanotechnology has emerged as one of the most exciting fields recently 

resulted from an integration of basic sciences like chemistry, physics, biology and 

mathematics with engineering sciences. The prefix “nano” in the world 

nanotechnology means a billionth (1 x 10-9). According to Roco (2001), 

nanotechnology covenants with materials and systems having the following key 

properties: 

• they have at least one dimension of about 1 – 100 nm 

• they are designed through processes that exhibit fundamental control 

over the physical and chemical attributes of molecular-scale structure 

• they can be combined to form larger structures 

 

Nanotechnology is an important tool to control the processes in which 

materials are made and the manner devices function at the atomic and molecular 
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level. This level of control enables unlimited creation of new materials and new 

devices. In addition, the properties of traditional materials change at the nanoscale 

level, where the behavior of the surface starts to dominate over the behavior of the 

bulk phase. Thus, nanomaterials possess excellent and unique properties which 

cannot be found in any traditional materials in the bulk phase. Figure  1.2 presents a 

diagram showing the region that belongs to nanotechnology.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1.2. The diagram shows the nanotechnology region (Nanodimension, 2005). 

 

The 21st century will undoubtedly be a period of substantial progress for 

nanotechnology. It is strongly believed that nanotechnology will complement and 

change life science, pharma, diagnostic, medicine technology, food, environmental 

technology, water, energy, electronics, mechanical engineering and so on to a new 

dimension in a near future. As reported by Roco and Bainbridge (2001), the market 

value of nano products and services will reach USD 1 trillion by 2015.  
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1.3 Allotropes of Carbon 

Advances in nanotechnology have led to the discovery of a growing number 

of new materials. Carbon nanotubes (CNTs), the newly-discovered carbon allotrope, 

have emerged as one of the most important components of the nanotechnology.  

It is widely known that carbon is an important element of unique properties 

with each carbon atom has six electrons, which occupy 1s2, 2s2 and 2p2 atomic 

orbitals. These atomic orbitals give three possible hybridizations in carbon bonding, 

representing sp, sp2 and sp3 configurations. Bonding of carbon atoms with neighbor 

atoms via sp configuration gives rise to chain structures, sp2 bonding to planar 

structures and sp3 bonding to tetrahedral structures. These hybridizations in carbon 

bonding are responsible for the formation of different carbon allotropes, including 

diamond (3-D form), graphite (2-D form), fullerene (0-D form) and recently CNTs 

(1-D form). The structures of these carbon allotropes are shown in Figure  1.3. 

 

 
 
 

 

 

 

 

 

 

 

 

 

Figure  1.3. The allotropes of carbon (Lau and Hui, 2002). 

 
Diamond Fullerene, C60 

Graphite Carbon nanotubes 



 5

Before 1985, it is commonly believed that carbon only exists in the forms of 

diamond and graphite. In 1985, the discovery of fullerene by Kroto and coworkers 

(Kroto et al., 1985) has changed the perception of scientists that very small 

dimension of carbon or perhaps a new carbon allotrope could be synthesized in a 

laboratory. This discovery has since stimulated researchers to study carbon of very 

small dimension more seriously. The real breakthrough on CNTs research came with 

Iijima’s report of experimental observation of CNTs using transmission electron 

microscope (TEM) in 1991 (Iijima, 1991).  

 

1.4 Carbon Nanotubes 

CNTs have been called the most innovative materials of the 21st century due 

to their extraordinary properties and their enormous potential applications. Perhaps, 

CNTs are the most interesting carbon allotrope with large application potential. The 

structure of a nanotube is similar to that of graphite, which is like a cylinder of rolled 

graphene sheet with its body contains hexagonal rings and end cap with certain 

number of pentagonal rings. The end cap and body each has a structure similar to 

that of fullerene and graphite, respectively (Figure  1.4). Therefore, CNTs are also 

referred to at times as a hybrid structure of fullerene and graphite. 
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Figure  1.4. The structure of CNT with enclosed tip (Nanodimension, 2005). 

 
CNTs can be categorized into two major groups based on the number of 

graphene sheets that forms their walls. A nanotube consisting of a single graphene 

sheet is referred to as single-walled CNT (SWNT). The nanotube that consists of two 

or more graphene sheets is named multi-walled CNT (MWNT). MWNT has an 

interlayer spacing of 0.34 – 0.36 nm, that is close to the typical atomic spacing of 

graphite, which is 0.335 nm. The C-C bonds that building up of CNTs have a length 

of 0.14 nm, which are shorter than the bonds in diamond. This indicates that CNTs 

are stronger than diamond (Bonard et al., 2001). The diagram shown in Figure  1.5 

represents: (a) a model of SWNTs bundle and (b) a model of MWNT with five 

graphene sheets. SWNTs are less stable as to stand alone due to their ultra-small size. 

Thus, most of the observed SWNTs appear in the bundle form, where the SWNTs 

are held by the weak van der Waals force.  

 

 

Pentagonal ring 

Hexagonal rings 

Graphite 
 structure 

Fullerene  
structure 



 7

 

 
 
 
 
 
 
 
 
(a)       (b) 
 
Figure  1.5. Schematic diagrams for (a) SWNTs in bundle form and (b) MWNT with 

five graphene sheets.   

 

It is important to differentiate the following terms i.e. “filamentous carbons”, 

“carbon nanotubes (CNTs)” and “carbon nanofibers (CNFs)”. “Filamentous carbons” 

is a general term used to represent all carbon nanostructures with needle-like 

morphology. Filamentous carbons can be classified into two main categories on the 

basis of their structures, i.e. CNTs and CNFs. The nomenclature of CNTs and CNFs 

is ambiguous as no standardization on the terms used has been implemented so far. 

According to Vander Wal et al. (2001), CNTs are referred to as a highly graphitic 

structure with the orientation of the basal carbon planes parallel to the tube axis 

whereas CNFs are the structures with the other orientations of the graphitic lamella 

that will leave a smaller or no central channel (Figure  1.6). According to Pan et al. 

(2004) and Pérez-Cabero et al. (2003), the term “CNTs” is used to refer to the 

filamentous carbons with a significant center channel or hollow core. Filamentous 

carbons without or with insignificant central channel are denoted as “CNFs”, 

regardless of their graphitic structure (Figure  1.7). The terms used in this thesis for 

these carbon structures are defined according to those given by Pan et al. and Pérez-

Cabero et al. as they are easily comprehended in explaining the types of filamentous 

carbons synthesized in the present study. 

Single graphene sheet 
Five graphene sheets 
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Figure  1.6. Schematic diagram presentation of the cross sections of (a,b) CNFs and 
(c) CNTs, with regard to their graphitic structures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  1.7. Schematic diagram presentation of the cross sections of (a,b) CNFs and 

(c) CNTs, with regardless to their graphitic structures. 

 

1.5 Hydrogen 

Hydrogen is an ultimate clean energy carrier. When it is combusted, heat and 

water are the only products. Therefore, the use of hydrogen as fuel can greatly reduce 

green house gas emissions. Moreover, development of affordable hydrogen fuel will 

help reducing our nation’s dependence on oil, leading to an increased national energy 

security. Thus, hydrogen offers a potentially non-polluting, inexhaustible, efficient 

and cost attractive fuel for today’s rising energy demands.  

(a) (b) (c) 

(a) (b) (c) 
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Future shortage of petroleum supply and surging prices of petroleum-based 

fuels, coupled with the increasing awareness of green house gas emissions increase 

the shift towards the alternative fuels sector. From Figure  1.8, it can be observed that 

over the decades hydrogen will increase its energy share dramatically, accounting for 

approximately 49% of the global final energy consumption by the end of the 21st 

century. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  1.8. Evolution of global market shares of different energy carriers for the 

period 2000 – 2100. The alcohol category includes methanol and 
ethanol (Barreto et al., 2003). 

 

1.6 Natural Gas 

Natural gas is a gaseous fossil fuel consisting primarily of methane and 

significant quantities of ethane, butane, propane, carbon dioxide, nitrogen, helium 

and hydrogen sulfide. Natural gas occurs in great abundance in some parts of the 

world, making a potential hydrocarbon feedstock and energy source that should not 

be underestimated. According to the recent Energy Information Administration (EIA) 
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report (EIA, 2007), Malaysia’s natural gas reserve ranks 16th in the world with a total 

reserve of 75 trillion ft3. The total world’s natural gas reserve records 6,183 trillion 

ft3 in 2007. There will be a tremendous market for natural gas if more valued 

products can be obtained from it. Coupled with the current worldwide crude oil 

shortage, the role played by natural gas as a fuel and raw material is of increasing 

importance.  

Table  1.1 shows the typical composition of natural gas and the composition 

of Malaysia natural gas. The composition of natural gas falls in a range for each of its 

component as the composition of natural gas from different reservoirs worldwide 

varies. Effective utilization of natural gas remains a challenge from the economic 

point of view. Natural gas itself can serve as fuel. However, for diversity, various 

routes have been considered for its conversion to value-added products, such as 

higher hydrocarbons, hydrogen and recently CNTs. Since methane is the major 

component of natural gas (70 – 90%), conversion of natural gas is always expressed 

scientifically as methane conversion.  

 

Table  1.1. Composition of natural gas (NaturalGas, 2007; GasMalaysia, 2008). 

Components Typical Malaysia  

Methane CH4 70-90% 92.73% 

Ethane 

Propane 

Butane 

C2H6 

C3H8 

C4H10 

0-20% 

4.07% 

0.77% 

0.14% 

Carbon Dioxide CO2 0-8% 1.83% 

Oxygen O2 0-0.2% N.A. 

Nitrogen N2 0-5% 0.45% 

Hydrogen sulphide H2S 0-5% N.A. 

Rare gases Ar, He, Ne, Xe trace N.A. 

Other hydrocarbon  N.A. 0.01 
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1.7 Methane Activation 

Figure  1.9 shows various paths of methane activation to other value-added 

products. Keller and Bhasin (1982) were the first to report the direct conversion of 

methane to ethylene. Following their work, oxidative coupling of methane (OCM) 

became one of the most pursued topics of research in methane activation. This is 

because hydrocarbon production via synthesis gas (syngas) is expensive and rather 

circuitous, and OCM prepares a simpler and cheaper route for the production of 

higher hydrocarbon from natural gas, using intermediate product, ethylene, as 

feedstock. Another process, known as steam reforming of methane (SRM), can be 

used for syngas production. Owing to SRM produces higher H2 to CO ratio, being 

3:1 (Figure  1.9), this process is widely applied in the gas industry for producing 

hydrogen on a large scale. Another alternative way to make syngas from methane is 

through partial oxidation of methane (POM). This reaction produces H2 and CO in 

the ratio of 2:1. Carbon dioxide reforming of methane (CO2RM) is another way to 

produce syngas. This process produces H2 and CO in the ratio of 1:1. It is noteworthy 

that the ratios of 2:1 and 1:1 are desirable H2 to CO ratio for the downstream process. 

The syngas produced from the mentioned routes can be further converted into 

methanol, an important feedstock for the methanol to gasoline (MTG) process meant 

for producing gasoline (Chang, 1998). Alternatively, syngas can be directly 

processed into hydrocarbons via the Fischer-Tropsch (FT) process (Vannice, 1976).  

Direct decomposition of methane has been proposed as an economical 

process to produce hydrogen. Unlike SRM, POM and CO2RM, methane 

decomposition process produces only H2 and solid carbon, thereby eliminating the 

necessity for separation of COx from H2 product. The carbon product produced from 

methane decomposition has an additional advantage as various valuable types of 
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carbon, including carbon black, CNFs and CNTs, can be obtained as by-products 

from this process.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Figure  1.9. Various paths of methane activation to more value-added products 
(Choudhary et al., 2003). 
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1.8 Methane Decomposition 
 

Decomposition of methane can be categorized into two major types, 

representing thermal decomposition and catalytic decomposition. Thermal 

decomposition of methane (TDM) (equation 1.1) occurs at elevated temperatures, 

above 1200°C, in a thermal reactor without the presence of a catalyst (Shpilrain et al., 

1999; Muradov, 2001). This process produces hydrogen as the major product and 

clean carbon black as by-product. Carbon black is an important feedstock for rubber 

industry (Zuev and Michailov, 1970). 

 

    2H        C        CH 2 

C1200
4

o

+ →>       (1.1) 

 

The reasons for not employing catalyst in the decomposition of methane is 

mainly due to the carbon formation will deactivate the catalyst and thus, decreasing 

the hydrogen yield. However, the TDM process is not economical for commercial 

hydrogen production as it requires very high operating temperatures. To overcome 

this drawback, specially designed catalyst is used, and it allows reducing the reaction 

temperature of the decomposition process. Methane decomposition with the presence 

of catalyst is widely known as catalytic decomposition of methane (CDM) (equation 

1.2).  

 

 2H                     C             CH 2 

C900-005
4

o

+ →
CATALYST

        (1.2) 

 

The types of catalysts used and the reaction conditions employed are the two 

important factors to be considered for a CDM process. Transition metals, especially 
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black 

Hydrogen
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metals from group VIII (Fe, Co and Ni) in the periodic table, are normally used as 

catalytic materials. (Bethune et al., 1993; Fan et al., 1999; Takenaka et al., 2003b; 

Zein et al., 2006). The typical reaction temperatures for CDM are in a range of 500 - 

900oC, a temperature which is much lower than that required by the TDM process. 

As a consequence of this, more attentions are focused on the CDM process by 

industrialist, researchers, scientists, etc. Also, not only hydrogen gas is produced, 

filamentous carbons can be produced as one of the valued products from the CDM 

process (Figure  1.10). It should be noted that filamentous carbons are more valuable 

than carbon black due to their excellent properties and their many promising 

applications. By proper designing of a catalyst and performing the CDM process at 

suitable reaction conditions, one can tailor-make the specific types of filamentous 

carbons for the needs of the market and this is one of the major researches that has 

attracted the great interest of many researchers around the world.  

 

 

 

 

 

 

 

 

 

Figure  1.10. Flowchart showing the possible products obtained from CDM process. 
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1.9 Problem Statement 

The discovery of CNTs using various technologies in the past 17 years has 

witnessed significant progress in their synthesis and applications. Even though CNTs 

have been successfully synthesized via various approaches, there are still technical 

challenges that must be investigated and overcome. To date, no one has successfully 

achieved controlled synthesis and cost effectively growing CNTs on a large scale. 

Controlled synthesis means one can tailor-make CNTs with the desirable structures 

and morphologies, such as MWNTs, SWNTs, Y-junction, specific diameter, etc., 

through designing the catalyst and optimizing the process conditions. Production of 

cost effectively growing CNTs can only be achieved when one can grow CNTs in 

high selectivity to the desired structures and morphologies at high yield and with 

minimum cost. Since CNTs are very new materials, the problems arising especially 

in their synthesis part need further investigation and research.  

As most commonly known, electric arc-discharge (EAD), laser ablation (LA) 

and chemical vapor deposition (CVD) are prominent methods for CNTs synthesis. 

The said methods have both advantages and disadvantages. As an example, EAD and 

LA methods, which require very high temperature (≥ 3000 oC), are not economical 

for scaling up the production of CNTs although both are efficient in producing 

SWNTs and MWNTs with fewer defects (Dai, 2001). CVD has been appreciated as 

the most promising method for producing CNTs on a large scale. Unfortunately, the 

CNTs produced by the said method are usually MWNTs and often riddled with 

defects.  

CNTs of high quality and uniform diameter are essential to put the potential 

applications of CNTs into practice. This is attributable to the properties of CNTs: 

their metallic, semiconducting and mechanical properties depend strongly on their 
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diameter (Saito et al., 1992; Odom et al., 1998; Reich et al., 2004). To date, many 

groups of researchers have successfully produced CNTs of good quality and nearly 

uniform diameters (Nikolaev et al., 1999; Cheung et al., 2002; Huh et al., 2005; 

Kumar and Ando, 2005; Ren et al., 2006). However, most of them involved with 

complicated catalyst preparation procedures and sophisticated equipment that 

resulted in rising catalyst and production costs. In addition, the CVD method favors 

very high reaction temperatures (900 – 1200oC) for producing SWNTs (Hu et al., 

2003; Liu et al., 2003; Ando et al., 2004). This is a major shortcoming as higher 

reaction temperature increases the cost of production as well as enhances the 

deposition of undesirable carbonaceous materials resulted from thermal-pyrolysis of 

methane. Furthermore, synthesizing SWNTs at a lower reaction temperature such as 

at 700oC is very difficult and truly a challenge. Therefore, it is necessary to develop a 

method that can produce various types of CNTs with the capability in controlling 

their growth to the desired structures, morphologies and uniformity at a lower 

temperature.  

It cannot be denied that process and kinetic studies are also essential for 

successful design and application of CVD in producing CNTs. Unfortunately, the 

information pertaining to these studies is very limited in the literature. In addition, 

the growth mechanism of CNTs is still controversial. Therefore, it is imperative to 

conduct the process and the kinetic studies for investigating various process 

parameters that may influence and affect the yield and the growth mechanism of 

CNTs. The vital parts of the present work are to search and study the criteria for 

growing CNTs and achieving the controlled production by means of a simpler and 

cheaper approach.  
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1.10 Objectives 

The present study has the following objectives: 

1) To study the effects of catalyst components, including active metal, promoter and 

support, the effect of active metal to promoter ratio as well as the effect of metal 

amount loading, on methane decomposition into CNTs and COx-free hydrogen.  

2) To develop a relationship for the catalytic activity, the morphology of the 

produced CNTs and the CNTs growth mechanism with the nature of the catalyst 

used by performing various focal characterizations on both produced CNTs and 

developed catalysts.  

3) To examine the effects of catalyst preparations, including the effect of catalyst 

calcination temperature, the effect of catalyst preparation methods, the effect of 

metal amount loading and the effect of catalyst reduction temperature on carbon 

yield and morphology of produced CNTs.  

4) To evaluate the catalytic performance of the best catalyst in various process 

parameters, including reaction temperature, partial pressure of methane and 

catalyst weight. This is followed by analyzing, modeling and optimizing this 

process with respect to the simultaneous effects of these three process parameters 

on carbon yield and morphology of produced CNTs.  

5) To perform kinetic study, including the determination of reaction rate, reaction 

order, rate constant and activation energy as well as rate-determining step (RDS) 

of methane decomposition over the best catalyst developed in this work.  
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1.11 Scope of the Study 

The present study mainly focuses on catalyst development, process analysis 

as well as kinetic study for CNTs and COx-free hydrogen production via CDM 

process. Catalytic activity test of the developed catalysts is carried out at atmospheric 

pressure in a vertical fixed-bed micro-reactor. The product gases are analyzed using 

an online gas chromatography (GC). The freshly prepared catalysts and used 

catalysts are characterized using surface area analyzer, scanning electron microscope 

(SEM), transmission electron microscope (TEM), thermal gravimetric analyzer 

(TGA), temperature-programmed reduction (TPR) apparatus, X-ray diffractometer 

(XRD) and Raman spectroscopy. 

The aim of the catalyst development is to identify the most suitable supported 

catalysts used in the CDM that exhibit higher activity, selectivity and stability. In this 

regard, various active metals, promoters and catalyst supports are tested for CDM 

into CNTs and hydrogen. In this study, the selection of the active metals and 

promoters is limited to those only from Groups VIB, VIIB, VIII and IB in Row 4; 

and from Groups VIB and IB in Row 5 of the periodic table, respectively. These 

metals are chosen because they belong to the same group of metals, which are either 

active or effective as promoter for a catalyst in the CDM process. Noble metals that 

are in the same groups as those aforementioned metals are not considered in this 

study. This is because the non-noble metals are preferred commercially over noble 

metals, owing to the inherent availability and low costs of the former. The selection 

of catalyst supports covers Al2O3, MgO, CeO2, TiO2, La2O3, SiO2 (Cab-osil) and 

zeolites. These supports are chosen because they are widely reported in the literature 

as promising catalyst supports used in many chemical reactions, especially in the 
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CDM reaction. It is essential to choose the most suitable support which compatible 

with the metal used and the reaction condition employed in this study.  

Besides monometallic catalysts, bimetallic and trimetallic catalysts are also 

developed and tested in the present study. It is expected that addition of second and 

third metals component, such as CuO, CoOx, FeOx, MnOx, MoOx, NiO and etc., will 

further improve the overall performance of the catalysts. The suitability of the final 

developed catalyst in the CDM will be demonstrated. The effect of these catalyst 

components, namely active metals, promoters and catalyst supports on CNTs 

formation are also examined. In this regard, the yield and the morphology of the 

produced CNTs are characterized using surface area analyzer, Raman spectroscopy, 

SEM, TGA, TEM and XRD. The relationship between the catalytic activity and the 

morphologies of the produced CNTs with the nature of the catalyst material is 

developed. The possible growth mechanism for those structures with respect to the 

catalyst used is proposed.  

 In the process analysis, the effects of reaction temperature, partial pressure of 

methane and catalyst weight on methane decomposition are investigated using COST 

(change one separate factor at a time) approach. These factors are selected because 

they are reported to have influence either on the carbon yield or on the morphology 

of the produced CNTs. Data analysis is further studied using factorial design of 

response surface methodology (RSM) approach as to analyze the influences of each 

process variable and their interaction effects on carbon yield. This is followed by the 

determination of the optimum reaction condition from the set of experimental data 

collected. Lastly, kinetic study is carried out to obtain the reaction rate, reaction 

order, rate constant, activation energy and rate-determining step (RDS) of methane 

decomposition over the best catalyst developed in this work.  
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1.12 Organization of the Thesis 

This thesis consists of six chapters. Chapter 1 (Introduction) provides a brief 

description of catalysis, nanotechnology, allotropes of carbon, carbon nanotubes, 

hydrogen, natural gas as well as catalytic decomposition of methane process. This 

chapter also includes the problem statement that provides some basis and rationale to 

identify the research directions and objectives. The objectives and scopes of the 

study are then elucidated. This is followed by the organization of the thesis.  

 Chapter 2 (Literature Review) summarizes the past research works in the 

fields related to CNTs, including the properties and the potential applications of 

CNTs as well as their synthesis approaches. Synthesizing CNTs via CDM over 

supported catalysts is then being highlighted in this chapter. Possible growth 

mechanism of CNTs on supported catalysts is also reviewed and discussed. This 

serves as the background information about the specific problems that have to be 

addressed in this research work. 

 Chapter 3 (Materials and Methods) presents the details of the materials and 

chemicals used and the research methodology conducted in the present study. 

Detailed experimental setup is elaborated and shown in this chapter. This is followed 

by the discussion on the detailed experimental procedures, including catalyst 

preparations, CNTs synthesis procedures, process conditions and kinetic study. 

Finally, the analytical techniques and the conditions set for the equipment used for 

various characterizations of both CNTs and catalysts are presented.  

 Chapter 4 (Results and Discussion) presents and discusses all important 

findings obtained in this study. This chapter is the main part of the thesis and it 

comprises of six main sections based on the present experimental work. The main 

topics in this chapter include preliminary study on CDM process, CDM over 
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supported-nickel and -cobalt catalysts, effect of catalyst preparation, process analysis 

and kinetic study.  

Chapter 5 (Conclusions) summarizes the results reported in the previous 

chapters and some concluding remarks are also made. The conclusions are obtained 

from each individual study carried out in the present research.  

Chapter 6 (Recommendations) suggests the ways to improve the present 

studies and recommend the possible future studies in this field. These 

recommendations and suggestions are given after taking into consideration the 

significant findings, the conclusions obtained as well as the limitations and 

difficulties encountered in the present work.  
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2  

LITERATURE REVIEW 

 

2.1 Carbon Nanotubes 

2.1.1 History of filamentous carbons 

The history of filamentous carbons goes back to more than a century. The 

first filamentous carbons were synthesized by Thomas A. Edison in the 19th century 

to be used in an electric bulb (Dresselhaus and Endo, 2001). However, the study on 

filamentous carbons after Edison proceeded slowly due to the fact that most of the 

filamentous carbons had been replaced by more sturdy tungsten filaments. In 1975, 

Endo had reported the synthesis of carbon nanofilaments through catalyzed cracking 

of hydrocarbons in his PhD thesis (Endo, 1975; Dresselhaus and Avouris, 2001; 

Dresselhaus and Endo, 2001). At almost the same time, Obelin and coworkers 

reported carbon filaments of very small diameter (less than 10 nm) had been 

produced from decomposition of benzene at high temperatures (Oberlin et al., 1976a; 

Oberlin et al., 1976b). However, the studies of such very thin filaments were not 

systematically reported in those early years due to the limitation of the 

characterization equipment. The real breakthrough in the studies of carbon 

nanostructures was in 1985 when fullerenes were discovered by Kroto, Curl and 

Smalley (Kroto et al., 1985). This discovery since then had stimulated the 

systematical study on the very small diameter carbon structures.  

It is widely known that fullerene is a zero-dimensional carbon allotrope, 

whereas graphite and diamond are generally considered as two- and three-

dimensional structures, respectively. For this reason, scientists predicted that carbon 

allotrope of one-dimensional structure should be stable enough to exist 

CHAPTER 
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independently. In 1991, this speculation became a reality when the one-dimensional 

carbon structure was first discovered by a Japanese microscopist, Sumio Iijima 

(Iijima, 1991) in the Nippon Electric Company (NEC) Laboratory in Tsukuba, Japan. 

Under the transmission electron microscope (TEM) observation, this carbon structure 

appeared in the form of thread with significant hollow center core. Owing to its 

emplacement on the nano-scale and its thread-like structure, this carbon structure 

was named “carbon nanotubes (CNTs)”. Nowadays, CNTs are universally accepted 

as the fourth carbon allotrope. Figure  2.1 shows the structures of carbon allotropes 

including graphite, diamond, fullerene and CNTs. The first CNTs observed by Iijima 

were multi-wall carbon nanotubes (MWNTs). In 1993, single-walled carbon 

nanotubes (SWNTs) were discovered at almost the same time by Iijima and 

coworkers (Iijima and Ichihashi, 1993) in the NEC laboratory and by Bethune and 

coworkers (Bethune et al., 1993) in the IBM Almaden laboratory.  

 

 

 

 

 

 

 

 

 

 
 
 

Figure  2.1. The different structures of carbon allotropes: (a) fullerene (0-D), (b) 
carbon nanotubes (1-D), (c) graphite (2-D) and (d) diamond (3-D) 
(Cohen, 2001). 

(c) (d) 

(a) (b) 
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2.1.2 Structure of carbon nanotubes 

To have a basic understanding of the structure of CNTs is to visualize the 

folding of a graphene sheet into a tube. The folding can be done in many different 

angles to form armchair, zigzag or chiral nanotubes. Referring to Figure  2.2, the 

chiral vector Ch is defined as a line connecting two cystallographically equivalent 

sites O and C on a two-dimensional graphene structure. The chiral vector can be 

defined in terms of the lattice translation indices (n, m) (Dresselhaus et al., 1992). 

The chiral angle (θ) is an angle measured between the chiral vector Ch with respect to 

the zigzag direction (n, 0). The armchair nanotube is defined as θ = 30o and the 

translation indices is (n, n). A general θ direction, with 0 < θ < 30o, gives the 

formation of chiral (n, m) nanotubes. The structures of zigzag, armchair and chiral 

nanotube are shown in Figure  2.3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  2.2. The two-dimensional graphene sheet given chiralities (n, m) 

(Dresselhaus and Avouris, 2001). 
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