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PENCIRIAN SISTEM PATERI BEBAS PLUMBUM TERNARI SUHU 
RENDAH BERASASKAN INDIUM.   

ABSTRAK    

Pendekatan sistem pateri ternari digunakan untuk membangunkan pateri bebas 

plumbum bersuhu lebur rendah. Sistem pateri bebas plumbum Bi-24.8In-18.6Tin, Bi-

39.3In-17.5Sn dan In-36.1Bi-15.6Sn disediakan. Sebagai tambahan, Sn-10.11In-

6.2Zn and Bi-44Sn-2.1Zn juga dihasilkan untuk perbandingan kekuatan. Diketahui 

bahawa takat lebur sistem ternari Bi-In-Sn adalah dalam julat 60oC hingga 80oC 

bergantung kepada peratusan komposisi. Pencirian mikrostruktur dilakukan untuk 

semua aloi pateri menggunakan Mikroskop Imbasan Elektron(SEM). Pelbagai ujian 

seperti ujian pembasahan, ujian serakan, ujian kekuatan dan analisis ujian terma 

dilakukan sebagaimana yang dibincangkan. Kebolehbasahan bagi Bi-24.8In-18.6Sn, 

Bi-39.3In-17.5Sn, In-36.1Bi-15.6Sn, Bi-44.2Sn-2.1Zn dan Sn-10.1In-6.2Zn adalah 

didapati memuaskan dari segi daya pembasahan serta masa pembasahan yang 

diperolehi adalah masing-masing (3.67mN, 0.434sec), (4.34mN, 0.277sec), (4.71mN, 

0.169sec), (2.76mN, 0.440sec) and (5.43mN, 0.448sec). Sudut sentuh bagi aloi pateri 

Bismuth-Indium-Timah adalah kurang daripada 30o yang menunjukkan 

kebolehbasahan yang baik di atas substrat kuprum. Dalam perbandingan kekuatan 

Bi-24.8In-18.6Sn menunjukkan nilai tegangan yang paling tinggi  manakala Bi-

48.3In-15.6Sn mempunyai nilai ricih yang paling tinggi. Aloi pateri Bi-In-Sn 

mempunyai nilai pekali pengembangan terma yang lebih kecil berbanding aloi Sn-

10.11In-6.2Zn, Bi-44Sn-2.1Zn dan  Sn-37Pb eutektik.  
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PROPERTIES OF LOW TEMPERATURE INDIUM-BASED TERNARY 
LEAD FREE SOLDERS SYSTEM  

ABSTRACT   

The ternary solder system approach is used to develop low melting lead free solders. 

Bi-24.8In-18.6Sn, Bi-39.3In-17.5Sn and In-36.1Bi-15.6Sn lead free solder systems 

were prepared. In additions, Sn-10.11In-6.2Zn and Bi-44Sn-2.1Zn were also made 

for strength comparison. It was found that melting point of Bi-In-Sn ternary systems 

range from 60oC to 80oC depending on the percentage of the composition. 

Microstructure characterization was carried out for all solder alloys using Scanning 

Electron Microscope (SEM). Various tests such as wetting test, spreading test, 

strength test and thermal test analysis were applied and discussed. Wettability of Bi-

24.8In-18.6Sn, Bi-39.3In-17.5Sn, In-36.1Bi-15.6Sn, Bi-44.2Sn-2.1Zn and Sn-10.1In-

6.2Zn was found to be satisfactory with good wetting force and wetting time 

(3.67mN, 0.434sec), (4.34mN, 0.277sec), (4.71mN, 0.169sec), (2.76mN, 0.440sec) 

and (5.43mN, 0.448sec) respectively. Contact angle for Bismuth-Indium-Tin solder 

alloys is less than 30o which showed good wettability on copper substrate. In strength 

comparison Bi-24.8In-18.6Sn showed the highest in tension while Bi-48.3In-15.6Sn 

in shear. Bi-In-Sn solder alloys have smaller coefficient of thermal expansion than 

Sn-10.11In-6.2Zn, Bi-44Sn-2.1Zn and eutectic Sn-37Pb alloy.           
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CHAPTER 1 
INTRODUCTION  

1.1 Overview 

Nowadays, there is rapid development of technology in many industrial 

fields. Along with that, study and research is done to ensure that technology growth 

will not only make our daily routine easier but its application is safe. As far as our 

concern, we do not want human and environment become the victim of the unsafe 

technology. Simply said, we want the kind of technology which is secure for both 

human and environment.  

1.2 Statement of Problems 

The solder alloy normally used in microelectronic industry is eutectic 63Sn-

37Pb alloy with melting point 183oC. However the use of lead in microelectronics 

has been restricted by legislation because of health and environmental concern. 

According to the European Union Waste Electrical and Electronic Equipment 

Directive (WEEE) and Restriction of Hazardous Substances Directive (RoHS), lead 

has to be eliminated from electronic systems by July 1, 2006 (Wikipedia, 2006).  

Government regulations are becoming stricter, and managing of waste 

materials is becoming more regulated. Now is the time to take a solemn look at 

alternative materials for making electrical interconnection due to extinction of lead 

usage in solder. Generally, electronic manufacturing environment is a clean and safe 

place to work in; however, governments are still targeting the removal of lead from 

solder, due to lead pollutants generated in other industries (Karl, 1995). Furthermore, 

new lead-free solders offer better properties and enlarge the current range of 
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application of soldering technology (Moelans et al., 2003). The growth of various 

industrial sectors increased the usage of solder alloys especially in electronic 

industry. Manufacturing of electronic products need solder joint for mounting 

process of electronic components.  

Health and environmental problem due to the usage of toxic lead has attracted 

researchers to find alternative materials as a replacement of lead in solder alloys. The 

focus is not just the termination of lead in solder but also producing low temperature 

lead free solder. Alloys which are considered as low melting are alloys with melting 

temperature between 50oC to 180oC (Mei et al., 1996).  

The development of low melting solder which is similar or lower melting 

point compared to eutectic Sn-Pb is becoming more famous among researchers 

especially for those who are involved in microelectronic industries. This is 

encouraged by higher demand for low temperature lead free solder to prevent the 

damage of electronic devices due to high operating temperature. At the same time by 

using low temperature lead free solder, it can terminate the use of lead for the safety 

of workers.  

Surface mount technology (SMT) is demanding the use of low temperature 

solder alloy to prevent damages due to heat influence. Electronic devices used for 

SMT is sensitive to high temperature. Moreover, excessive heat can lead to damage 

of electronic components such as liquid crystal display (LCD) and circuit board.   
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Alloys which are suitable for lead-free solders must fulfil many requirements 

(Moelans et al., 2003):  

i. good wettability to the substrate, 

ii. ability to form a strong chemical bond with the substrate, 

iii. suitable melting temperature and solidification behaviour, 

iv. good mechanical properties like high strength and good resistance to 

mechanical and thermal fatigue, corrosion resistance; 

v. good electrical conductivity, 

vi. safe for health and environment, 

vii. possibility for easy assembly and, 

viii. low material cost.  

Yoon et al. (1999) reported that in the electronic devices assembly, solder 

joints are an important part of packaging integration because solder joint serves both 

as electrical contacts and as the mechanical support.  

The development of lead free solders is widely done all around the world. 

Lead free solder offers many benefits to the electronic industries. Several lead free 

solders having low melting temperature which is really good for electronic devices 

assembly in term of low temperature processing. Many devices and components used 

in electronic industries are sensitive to high temperature and might be damaged. 

Using low melting temperature lead free solders in electronic devices assembly can 

prevent the damages during assembly process. However, there are many other factors 
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that should be considered before the low temperature solders can be fully applied in 

the electronic devices assembly.   

The solder properties should be as good as the eutectic and near eutectic lead 

solder which have been used for a very long time in electronic industries. That is a 

great challenge to the researchers and electronic manufacturers in developing this 

new low temperature solder. The solderability and reliability of the new low 

temperature solder should be as good as conventional lead solder or even better. 

Beside that the materials or elements used to produce low temperature solders must 

be available for a long period and considerable in term of cost. This is to ensure that 

low temperature solders not only offer great properties but will not affect 

productivity in the electronic industries especially the processing cost. Consequently 

the electronic products can be offered at a competitive price in the market.  

1.3  Objective of the research 

Research on lead free solder is expanded everyday. In this study the focus is 

on the development of low melting solder alloys which is expected to have good 

solderability properties and considerable manufacturing cost. 

The main objectives of this research are:  

1. To investigate the formation of low temperature Sn-Bi-In solder system 

2. To evaluate the mechanical properties of produced solder alloys 

3. To study the interfacial reactions between solders and the contacted surface    
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1.4 Research Approach 

In this research, solder alloys were produced by melting raw materials 

(weight percent - wt %) mixture based on certain composition. The selection of 

composition is based on previous research by Moelans et al. (2003). Raw materials 

used in this research are tin, indium, bismuth and zinc having 99.99% purity.  

Solder preparation was started with weighing the raw materials based on 

weight percent (wt %) of selected composition. Then, elements are mixed and melted 

in the alumina crucible. Molten solder is stirred and hold for a few minutes at highest 

temperature (400oC) of the Solder Checker machine to ensure all the elements are 

well mixed and the molten alloy is homogenous. Molten solder is cooled at room 

temperature and a bulk of solder alloy is obtained.   

Mixture of raw materials is melted and poured into a special mould to 

produce a disc shape solder pellet with dimension 2 mm in thickness and 5 mm 

diameter that is required for spreading test. The solder piece was removed from the 

mould and punched with 5 mm puncher.   

Several testing was carried out to determine the properties of the solder 

alloys. Thermal analysis was done to determine the melting point of solder alloys. 

Phases exist in the solder alloy is observed through microstructural analysis.   

Solderability and physical properties of the solder was determined by wetting 

test and spreading test. For wetting test and spreading test, flux was used. Flux is 

very important because the wetting of solder alloy on the substrate will only occurred 
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with the existence of flux. Zinc chloride paste was used as a flux in this research. 

Mechanical properties of solder alloy are tested on the solder joint by doing tensile 

test and shear test.  

1.5 Research Schematic Diagram                                           

Raw Materials; 
Indium, Bismuth, Tin, Zinc 

 

Melting the mixed raw materials based on 
required composition to produce solder 

alloys 

 

SEM 

 

EDX 

 

XRD 

 

DSC 

 

TGA 

 

DTA 

Weighing based on required 
compositions 

Solderability 
Wettability (Wetting Balance Test) 

Sample preparation 
Bismuth-Indium-Tin, Bismuth-Tin-Zinc, 

 Tin-Indium-Zinc 

Reliability 
Spread Test 

 

Mechanical Properties; 
Tensile Test, Shear Test,  

Physical Property 
Thermal Expansion 

 

SEM 

 

EDX

  

SEM 

 

EDX

  

SEM 

 

EDX
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CHAPTER 2 
LITERATURE REVIEW   

2.1 BACKGROUND 

Sn-Pb solders have been widely used to make electronic interconnections. 

The components of the Sn-Pb system are completely soluble in the liquid state but 

only partially soluble in the solid state. This is the most ordinary type of binary 

system and is the same as for numerous systems of copper-silver, copper-tin, copper-

zinc, aluminium-copper and aluminium-magnesium (Manko, 2001).  

The solderability of component is a measure of their total suitability for 

industrial soldering. Wassink (1989) stated that sufficient solderability of the parts 

used in the soldering process is a major qualification for the success of the process.  

Surface mount technology (SMT) has been widely adopted in recent years. 

Unfortunately, SMT has also introduced new failure mechanisms. Solder joints are 

important for both electrical and mechanical connections. Solder does not have 

enough ductility to absorb repeated relative displacements (Lau, 1991).  

Making solder Pb-free has become an urgent task for the electronics assembly 

industry because more consumer products are moving towards environmentally 

friendly packaging. The elimination of Pb in the solder reduces not only toxicity but 

also the amount of radioactive elements, which are harmful and can cause 

malfunction of integrated circuits through alpha ray emission (Chan et al., 2003; 

Zhong et al., 2003). There is therefore a definite need to find a replacement for SnPb 

solder. 
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In recent years, a variety of lead free solders has been developed as 

replacements of Sn-Pb eutectic solder. Some lead-free solders have been practically 

used in precision electronic devices. Lead-free solders are required to have excellent 

properties such as suitable melting point and good solder joints. Beside it is enviable 

that the characteristics of lead-free solders are similar to the conventional Sn-Pb 

solder (Zhou et al., 2005) so that we can use the same processing equipment, 

conditions, and fluxes optimized for Sn-Pb solders (Kishan, 2005). One of the 

important requirements for electronics solders is processing temperature as low as 

Sn-Pb eutectic alloy.  

Wider process windows in mass production environments would aid in 

achieving good manufacturing process yields with high productivity apart from 

allowing product circuit designers more flexibility in layout design and selection of 

components.   

2.1.1 Solder 

A solder is a fusible metal alloy, with a melting point between 90-450°C 

(Wikipedia, 2008). However, at this moment there is solder alloy with a melting 

point lower than 90oC. Solder is melted to join metallic surfaces, especially in the 

fields of electronics and plumbing, in a process called soldering. Figure 2.1 show one 

of the solder available in the market in a wire shape.  

The word solder comes from the Middle English word soudur, via Old French 

soldure and soulder, from the Latin solidare, meaning ' to make solid '(Wikipedia, 
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2006). Elements which are commonly used as a solder alloys are tin (Sn), lead (Pb), 

argentums (Ag), bismuth (Bi), indium (In), antimony (Sb), and cadmium (Cd).  

  

Figure 2.1: Reels of solder © Rapid Electronics (Wikipedia, 2007)   

Solder for electronics use contains tiny cores of flux, like the wires inside a 

mains flex. The flux is corrosive, like an acid, and it cleans the metal surfaces as the 

solder melts. Without flux most joints would fail because metals quickly oxidize and 

the solder itself will not flow properly onto a dirty, oxidized, metal surface. The best 

size of solder for electronics in wire shape is 22swg. (Hewes, 2007)  

2.1.2 Soldering Technology 

American Welding Society (AWS) defined soldering as metal joining at 

temperature below 427oC. Soldering depends on the wetting to form bonding through 

diffusion or formation of intermetallic compound on base metals. Soldering is a 

method of making a permanent electrical and mechanical connection between metals. 

Unlike glue, which forms a solely physical adhesive bond, solder chemically reacts 

with other metals to form a different alloy. While there are many different processes 

utilized in soldering, virtually all of them involve four basic elements: base metals, 

flux, solder, and heat (Hoban & Lunt, 1997).  
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Soldering is the process in which two metals are joined together by use of 

solder, a tin or lead alloy, which is melted at a relatively low temperature by a 

soldering iron and applied between the original components to bridge the gap while it 

is soft and malleable. Soldering is sometimes confused with welding, but is distinct 

in that welding causes the original metal pieces to melt together, while the addition 

of a third bridging material is optional. Soldering does not involve the melting of the 

metals to be joined, and always make use of the filler material.   

Soldering is most commonly associated with electronic work, but the practice 

has a long history and is also utilized for plumbing, jewellery crafting, and a variety 

of other trades that require the ability to manipulate metal. Rahn (1993) assured that 

there is evidence to suggest that soldering was used even earlier, many different 

soldering techniques were widely used throughout the Greek and Roman Empires, as 

well as in Viking dominated Scandinavia. Archaeologists have found jewellery, 

weapons, tools, and cutlery that have been very skilfully soldered.  

Throughout the years solder has been used in various applications, however it 

was the invention of electronic devices in the latter part of this century that guide to 

hasty advances in soldering technologies. The most frequent application of soldering 

is assembling electronic components to printed circuit boards (PCBs). Another 

common application is making permanent but reversible connections between copper 

pipes in plumbing systems.   

Joints in sheet-metal objects such as food cans, roof flashing, rain gutters and 

automobile radiators have also historically been soldered, and occasionally still are. 
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Jewellery and small mechanical parts are still often assembled by soldering. 

Soldering is used to join lead came and copper foil in stained glass work. Soldering 

can also be used to make affect a semi-permanent patch for a leak in a container or 

cooking vessel.  

Hoban and Lunt (1997) stated that there are two main classifications of 

soldering methods in use today: mechanical or non-electrical (using primarily acid 

flux), and electrical (using primarily rosin flux).  

While advances in transistors, resistors, capacitors, diodes, and especially 

integrated circuits have revolutionized the world, these devices are of very little 

value as individual components. For these devices to be of use, they must be 

electrically connected to each other and to mechanical devices. The majority of these 

electrical connections are made by soldering. Not only does solder make electrical 

connections, it is also used to provide a physical connection between the component 

and its supporting printed circuit board.   

Currently, mass-production PCBs are almost always wave soldered or reflow 

soldered. In wave soldering, parts are temporarily adhered to the PCB with small 

dabs of adhesive, and then the assembly is passed over a small fountain in a bulk 

container of molten solder. Reflow soldering is a somewhat newer process in which a 

solder paste (a sticky mixture of powdered solder and flux) is used to stick the 

components to their attachment pads, after which the assembly is heated by an 

infrared lamp or (more commonly) by passing it through a carefully-controlled oven. 

Since different components can be best assembled by different techniques, it is 
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common to use two or more processes for a given PCB; the surface mounted parts 

may be reflow soldered, followed by a wave soldering process for the through-hole 

mounted components, with some of the bulkier parts hand-soldered on last.  

2.1.2(a) Wave Soldering 

Wave soldering is a large-scale soldering process by which electronic 

components are soldered to a PCB to form an electronic assembly. The name is 

derived from the fact that the process uses a tank to hold a quantity of molten solder; 

the components are inserted into or placed on the PCB and the loaded PCB is passed 

across a pumped wave or cascade of solder. The solder wets to the exposed metallic 

areas of the board (those not protected with solder mask), creating a reliable 

mechanical and electrical connection. The process is much faster and can create a 

higher quality product than manual soldering of components. Wave soldering is used 

for both through-hole printed circuit assemblies, and surface mount. In the latter 

case, the components are glued onto the printed circuit board surface before being 

run through the molten solder wave.  

As through-hole components have been largely replaced by surface mount 

components, wave soldering has been supplanted by reflow soldering methods in 

many large-scale electronics applications. However, there is still significant wave 

soldering where SMT is not suitable (e.g. large power devices and high pin count 

connectors), or where simple through-hole technology prevails (certain major 

appliances).   
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2.1.2(b) Reflow Soldering 

The development and increased use of surface mount technology has led to 

the use of other soldering methods. While surface mount components can be wave 

soldered, they must first be attached to the circuit board with some type of adhesive 

or cement in order to keep them in place during soldering. This introduces another 

step in the assembly process. Since the whole surface-mount component is immersed 

in the wave, it must be constructed in such a manner to withstand the high 

temperature of the liquid solder. There is also a problem of gasses being trapped 

between the component and the board (Manko, 1995). Because of these difficulties 

with wave soldering; re-flow soldering is the preferred method of soldering surface 

mount components.   

Reflow soldering is the most common means to attach a surface mounted 

component to a circuit board. In a re-flow process, solder paste is put on the 

component sites of the printed circuit board, and then the components are put on the 

board on top of the solder paste. The board and attached components are then heated 

to activate the flux, elevate the temperature of the base metals, and melt (or "re-

flow") the solder (Hoban and Lunt 1997).  

The goal of the reflow process is to melt the powder particles in the solder 

paste, with the surfaces being joined together, and solidify the solder to create a 

strong metallurgical bond. Often a separate adhesive is used to hold the device in 

place until soldering takes place. There are usually four process zones in 

conventional reflow process, consisting of preheat, thermal soak (often shortened to 

just soak), reflow and cooling. 
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2.2 Lead Solder 

Solder used for electronics is a metal alloy, made by combining tin and lead 

in different proportions. With most Sn-Pb solder combinations, melting does not take 

place all at once. Fifty-fifty solder begins to melt at 183°C, but it's not fully melted 

until the temperature reaches 216°C (Circuit Technology Centre s Website, 2000).  

Between these two temperatures, the solder exists in a plastic or semi-liquid state. 

Figure 2.2 shows the eutectic diagram for tin-lead solder.  

The plastic range of a solder varies, depending upon the ratio of tin to lead. 

With 60/40 solder, the range is much smaller than it is for 50/50 solder. The 63/37 

solder, known as eutectic solder has practically no plastic range, and melts almost 

instantly at 183°C.   

  

Figure 2.2: Sn-Pb eutectic diagram (Ben, 1990)   
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The solders most commonly used for hand soldering in electronics are the 

60/40 type and the 63/37 type. Due to the plastic range of the 60/40 type, please be 

careful not to move any elements of the joint during the cool down period. 

Movement may cause disturbed joint. A disturbed joint has a rough, irregular 

appearance and looks dull instead of bright and shiny. A disturbed solder joint may 

be unreliable and may require rework. The extensive use of the Sn-Pb alloy is due 

the following reasons.   

1. The melting point (1830 C - 1890 C) is low enough to permit the design of 

components that can endure the high temperatures associated with the soldering 

process.  

2. Though the solder oxidizes quite rapidly, the characteristics of the tin oxide films 

pose relatively few problems compared with the oxide films of some other low-

melting metals.  

3. Because of the affinity between tin and many other metals, good wetting can be 

achieved with the aid of only mildly active fluxes.  

4. It provides reasonably good mechanical strength to the solder joint, which can be 

expected with soft-soldering.   

By contrast, a mixture of lead and tin is eutectic because these metals are only 

partially soluble in each other when in the solid state. Lead and tin have different 

crystal structures (face-centred cubic (FCC) versus body-centred cubic (BCC)) and 

lead atoms are much larger. No more than 19.2% by weight of solid tin can dissolve 

in solid lead and no more than 2.5% of solid lead can dissolve in solid tin. The solid 

lead-tin alloy thus consists of a mixture of two solid phases, one consisting of a 
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maximum of 19.2 wt% tin (the alpha phase) and one consisting of a maximum of 

2.5 wt% lead (the beta phase).   

For example, as a 40 wt% tin-lead liquid cools it will begin to have a liquid & 

solid phase coexisting. The solid (proeutectic) alpha phase has an increasing 

concentration of tin as cooling continues until the eutectic composition of 

61.9 wt% tin is reached at 183ºC - when no more liquid phase exists. Solidification 

in the alpha proeutectic region consists of layered growth of solid nodules - with 

each layer containing a higher concentration of tin. This layering of increasing 

concentrations of tin is called coring. Faster cooling results in reduced coring.   

The word eutectic is derived from Greek roots meaning "easily melted". A 

eutectic mixture has a eutectic composition for which complete liquefaction occurs at 

a lower temperature (the eutectic temperature) than for any other composition. For 

lead and tin the eutectic composition is 61.9 wt% tin and the eutectic temperature is 

183ºC - which makes this mixture useful as solder. At 183ºC, compositions of greater 

than 61.9 wt% tin result in precipitation of a tin-rich solid in the liquid mixture, 

whereas compositions of less than 61.9 wt% tin result in precipitation of lead-rich 

solid.   

2.2.1 Alternatives to lead 

Sn-Pb solder alloys have been widely used in the electronic industries due to 

low melting point, good wettability, good corrosion resistance and good electrical 

conductivity. Due to restriction on the usage of lead, lead free solder is really needed. 
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Therefore, more efforts focusing on the design of solder alloys systems that can 

replace Sn-Pb solder is being done.  

Alternative lead-free solder alloys are being developed, but their introduction 

into electronics manufacturing requires major changes to current manufacturing 

processes, electronic components, and inspection requirements. Several lead-free 

solder alloys generally require higher temperatures - up to 260°C as opposed to 

215°C - to perform the soldering operation, which may affect the reliability of boards 

and components. Soldering equipment may not be capable of maintaining such high 

temperatures. The temperature profiles employed in reflow soldering may be longer, 

which will adversely affect productivity.   

The issues of material compatibility are a major concern when employing 

lead-free soldering technologies on heritage lead-based assemblies. Certain alloys 

will form intermetallics when used on a component or board coated with lead-tin 

solder, which will reduce the resulting solder joint's mechanical integrity. There is no 

drop in "turnkey" of available lead-free solder alternatives due to the intermetallic 

formation. However, research is still carried out to fulfil the industries needed base 

on required specification and standard.  

2.3 LEAD FREE SOLDER 

2.3.1 Design for Environment   

The original equipment manufacturer (OEM's) and semiconductor 

manufacturing companies have initiated the process of making their products lead-

free. The activity is often called "Design for Environment" or "DfE." The "DfE" 
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process in the electronics industry starts with the materials used in making the 

electronics equipment. (Kishan, 2005)  

2.3.2  Solder Materials 

A large number of lead-free solders have been developed and applications 

have been made for over 100 patents on various alloy compositions. The question of 

which lead-free solder is the "best" is often asked but is difficult to answer since 

there is no absolute drop-in replacement for tin-lead with identical melting 

temperature, cost, wetting and strength properties. Figure 2.3 shows a lead-free 

solder which is available in the market. 

  

Figure 2.3: A coil of lead-free solder wire (Wikipedia, 2007).  

The most convenient way to separate the available lead-free alloys is to first 

consider their melting temperature (Kishan, 2005). Most fit into one of the following 

categories: low melting temperature (below 180°C), melting temperature equivalent 

to the tin-lead eutectic (180-200°C), mid-range melting temperature (200-230°C), 

and the high-temperature alloys (230-350°C). By considering the service temperature 

that the alloy will experience, together with any maximum temperature limitations of 

the components or other items to be joined, an alloy of a suitable melting point can 

be found.  
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Lead-free alloys as a replacement for eutectic alloy 63Sn-37Pb (melting 

point, 183oC) or near eutectic 60Sn-40Pb should have similar melting point or 

melting range. Certain Sn-based binary alloy is having a very low melting 

temperature or very high melting temperature.  

Several lead free solders have been used in electronic devices, for example, 

personal computer and cellular hand phone by Japanese manufacturers. Lead-free 

solder should have good properties such as suitable melting point and good solder 

joint. In addition, lead-free solder need to have same characteristics as conventional 

Sn-Pb solder. This is to ensure the usage of available processing equipment and fulfil 

the processing characteristics and optimized fluxes for Sn-Pb solder.  

Most of lead free solders are Sn-based. Special solders category used are 

eutectic alloy and inert metal such as aurums (Au), argentums (Ag) and copper (Cu). 

These eutectic alloys are used as solders because of their low melting point. So, all 

solder bonds will melt or become solid at one single temperature. If not there might 

be a possibility of partial melting or partial solidification can occur. Other additional 

alloy elements such as bismuth (Bi), zinc (Zn), indium (In) and germanium (Ge) are 

considered as combined Sn eutectic alloys.  

Different elements serve different roles in the solder alloy (Wikipedia, 2007):  

 

Silver provides mechanical strength, but has worse ductility than lead. In 

absence of lead, it improves resistance to fatigue from thermal cycles.  
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Copper lowers the melting point, improves resistance to thermal cycle 

fatigue, and improves wetting properties of the molten solder. It also slows 

down the rate of dissolution of copper from the board and lead in the liquid 

solder. 

 

Bismuth significantly lowers the melting point and improves wettability. In 

presence of lead and tin, bismuth forms crystals of Sn16Pb32Bi52 with 

melting point of only 95 °C, which diffuses along the grain boundaries and 

may cause a joint failure at relatively low temperatures. A lead-contaminated 

high-power part can therefore desolder under load when soldered with a 

bismuth-containing solder.  

 

Indium lowers the melting point and improves ductility. In presence of lead it 

forms a ternary compound that undergoes phase change at 114 °C.  

 

Zinc lowers the melting point and is low-cost. However it is highly 

susceptible to corrosion and oxidation in air, therefore zinc-containing alloys 

are unsuitable for some purposes, e.g. wave soldering, and zinc-containing 

solder pastes have shorter shelf life than zinc-free ones.  

 

Antimony is added to increase strength without affecting wettability.  

Lead-free solder joints may produce mechanically weaker joints depending 

on service and manufacture conditions, which may lead to a decrease in reliability 

using such solders. "Tin Whiskers" are another problem with many lead-free solders, 

where slender crystals of tin slowly grow out of the solder joint. These whiskers can 

bridge a short circuit years after a device's manufacture. 

 

SnAgCu solders are used by two thirds of Japanese manufacturers for reflow and 

wave soldering, and by about ¾ companies for hand soldering.  
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o SnAg3.0Cu0.5, tin with 3% silver and 0.5% copper, has a melting point of 

217-220 °C and is predominantly used in Japan. It is the Japan Electronics 

and Information Technology Industries Association (JEITA) recommended 

alloy for wave and reflow soldering, with alternatives SnCu for wave and 

SnAg and SnZnBi for reflow soldering.  

o SnAg3.5Cu0.7 is another commonly used alloy, with melting point of 217-

218 °C.  

o SnAg3.5Cu0.9, with melting point of 217 °C, is determined by National 

Institute of Standards and Technology (NIST) to be truly eutectic.  

o SnAg3.8Cu0.7, with melting point 217-218 °C, is preferred by the European 

IDEALS consortium for reflow soldering.  

o SnAg3.8Cu0.7Sb0.25 is preferred by the European IDEALS consortium for 

wave soldering.  

o SnAg3.9Cu0.6, with melting point 217-223 °C, is recommended by the US 

National Electronics Manufacturing Initiative (NEMI) consortium for reflow 

soldering. 

 

SnCu0.7, with melting point of 227 °C, is a cheap alternative for wave soldering, 

recommended by the US NEMI consortium.  

 

SnZn9, with melting point of 199 °C, is a cheaper alloy but is prone to corrosion 

and oxidation.  

 

SnZn8Bi3, with melting point of 191-198 °C, is also prone to corrosion and 

oxidation due to its zinc content.  

 

SnSb5, tin with 5% of antimony, is the US plumbing industry standard. Its 

melting point is 232-240 °C. It displays good resistance to thermal fatigue and 

good shear strength.  
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SnAg2.5Cu0.8Sb0.5 melts at 217-225 °C and is patented by AIM alliance.  

 
SnIn8.0Ag3.5Bi0.5 melts at 197-208 °C and is patented by 

Matsushita/Panasonic.  

 
SnBi57Ag1 melts at 137-139 °C and is patented by Motorola.  

 

SnBi58 melts at 138 °C.  

 

SnIn52 melts at 118 °C and is suitable for the cases where low-temperature 

soldering is needed.   

2.4 Binary Alloys 

2.4.1 Tin-Bismuth Solder Alloy 

Morris et al. (1993) reported the tin-bismuth (Sn-Bi) system has a eutectic 

composition of 42Sn-58Bi and a relatively low eutectic temperature of 139°C (Figure 

2.4). The room temperature equilibrium phases are Bi and Sn with about 4 wt% Bi in 

solid solution. Since tin has very low solubility in Bi at the eutectic solidification 

temperature of 130°C, the Bi phase is essentially pure Bi. However, the maximum 

solubility of Bi in Sn is about 21 wt% (Kabassis et al., 1986). As the alloy cools, Bi 

precipitates in the Sn phase. At moderate cooling rates, the eutectic Sn-Bi 

microstructure is lamellar, with degenerate material at the boundaries of the eutectic 

grains. This microstructure is similar to the one theoretically predicted by Croker et 

al. (1973) for relatively slow cooling rates.   

Wild (1971) observed cracks on slowly cooled eutectic Sn-Bi solder joints. 

Slow cooling resulted in the formation of large grains. Tin precipitates from the 

solder matrix along the boundaries of these large grains through which cracking 
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occur. Cracking was not observed during rapid cooling. Cooling rates, however, were 

not specified in the literature. It has also been reported by Glazer (1995) that 

recrystallization of the alloy produced an expansion of up to 0.0007 in. /in. Wild 

(1971) stated the expansion results in embrittlement, which may be due to strain 

hardening caused by deformation that occurs to accommodate the expansion.  

  

Figure 2.4: Tin-Bismuth Phase Diagram (Metallurgy Webmeister, 2003)  

2.4.2 Tin-Indium Solder Alloy 

The indium-based solder with the composition of In-48Sn is the one that is 

commonly used for SMT applications. The eutectic composition is In-48Sn, and the 

eutectic temperature is 117°C.  The two phases that form are intermetallic phases - an 

Indium-rich, pseudo-body-centred tetragonal phase, , which has 44.8 wt. % Sn, and 

a hexagonal Sn-rich phase,

 

with 77.6 wt. % Sn (Glazer, 1995). Mei and Morris 

(1992) described the microstructure of In-48Sn solder on a Cu substrate as having 

lamellar features. The Sn-rich phase is composed of equiaxed grains. The Indium-

rich phase contains Sn precipitates. A similar structure with less irregularity was 
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observed by Freer and Morris (1992) on a Ni substrate and significant 

microstructural coarsening was observed by Seyyedi (1993), after prolonged aging of 

the solder joints made on a Cu substrate.  

2.4.3 Tin-Zinc Solder Alloy 

One of the important requirements for electronic solders is processing 

temperature as low as Sn-Pb eutectic alloy. As substitution candidate, the melting 

point of Sn-Zn eutectic alloy is closest to the Sn-Pb eutectic alloy. New research are 

done for Sn-Zn base solder alloy to improve other properties (Katsuki et al., 2000; 

Wu et al., 2000; Kim et al., 2003; Shiue et al., 2003; Song et al., 2003).The most 

crucial problems with Sn-Zn binary alloy is poor wettability. High surface tension of 

liquid phase and zinc oxide (ZnO) float on the liquid surface has restrained this 

solder from wetting copper (Katsuki et al., 1998; Lin et al., 1998, 2003; Yu et al., 

2003). The Sn-9Zn eutectic solder alloy appears to be an attractive alternative, with a 

melting temperature of 198°C that is relatively close to eutectic tin-lead solder 

(Figure 2.5).  

  

Figure 2.5: Tin-Zinc Phase Diagram (Islam et al., 2005)  




