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FABRIKASI, CIRI-CIRI STRUKTUR DAN ELEKTRIK FILEM NIPIS ZINK 
OKSIDA (ZnO) OLEH PERCIKAN ARUS TERUS  

 
ABSTRAK 

 
 

Semikonduktor jurang tenaga lebar zink oksida (ZnO) telah muncul sebagai bahan 

yang berpotensi untuk pelbagai aplikasi termasuklah sebagai peranti opto-elektronik  

seperti diod pemancar cahaya, diod laser dan pengesan. Terdapat banyak lagi yang 

perlu diterokai dan difahami tentang ZnO sebelum peranti-peranti ini boleh 

dikomersilkan. Paling ketara, pendopan jenis p bagi ZnO masih lagi menjadi isu 

disebabkan oleh ZnO yang sememangnya wujud sebagai jenis n. Namun, apabila 

pendopan jenis p diperolehi, ZnO dapat digunakan di dalam pelbagai bidang seperti 

yang dinyatakan di atas. Matlamat projek ini adalah untuk mensintesis pendopan 

serentak ZnO di dalam bentuk filem nipis dengan menggunakan teknik percikan 

magnet arus terus dan mengkaji ciri-ciri struktur serta elektrik. Teknik percikan 

serentak bagi 99.99 % tulen target zink dan 99.99 % tulen aluminium asli dimendapkan 

ke atas substrat silikon. Kemudian, filem-filem nipis tersebut menjalani proses 

sepuhlindap pada suhu yang berlainan di antara 200 °C hingga 600 °C dengan nisbah 

gas nitrogen dan oksigen yang berbeza. Ciri-ciri struktur dan elektrik bagi filem- filem 

nipis ZnO dicirikan oleh mikroskop daya atom (AFM), mikroskop imbasan elektron 

(SEM), pembelauan sinar-X (XRD) dan pengukuran kesan Hall. Daripada keputusan 

yang diperolehi, kesemua filem zink telah menjadi ZnO seperti yang disahkan oleh 

XRD dan filem konduksi jenis p berjaya dihasilkan dengan  kaedah pendopan oleh Al-

N. Hasil ini juga menunjukkan bahawa struktur filem adalah sangat dipengaruhi oleh 

suhu  sepuhlindap dan  nisbah nitrogen dan oksigen yang digunakan. Keputusan yang 

diperolehi daripada AFM mendapati bahawa kekasaran struktur permukaan semakin 

menurun apabila suhu sepuhlindap meningkat dengan kehadiran nitrogen yang 

banyak. Walau bagaimanapun, SEM menunjukkan perubahan yang ketara pada 

struktur permukaan filem nipis apabila suhu sepuhlindap meningkat dari 200 °C  



 xii

hingga 600 °C dengan kehadiran oksigen dan nitrogen.  Filem yang disediakan dengan 

nisbah 50% N2 : 50% O2  dan disepuhlindap pada suhu 200 °C selama 1 jam 

mempunyai kerintangan paling rendah iaitu 1.530 x 10-3 Ω.cm dan ketumpatan 

pembawa  paling tinggi iaitu +1.85 x 1022 cm-3. 
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FABRICATION, STRUCTURAL AND ELECTRICAL CHARACTERISTICS OF  
ZINC OXIE (ZnO) THIN FILMS BY DIRECT CURRENT SPUTTERING 

 
ABSTRACT 

 

The wide band gap semiconductor of zinc oxide (ZnO) has emerged as a potential 

material for the fabrication of a range of devices including opto-electronic devices such 

as light – emitting diodes (LEDs), laser diodes (LDs) and detectors. There is still much 

to be explored and understood about ZnO before such devices can be commercially 

realized. Most notably, p-type doping of ZnO remains an issue, as does the origin of 

the native n-type conductivity.  Nevertheless, when p-type doping is obtained in ZnO it 

could be used in various applications as mentioned above. The goals of this project 

were to synthesize codoped ZnO in the forms of thin films by using direct current (DC) 

magnetron sputtering deposition technique and to study the structural and electrical 

properties. A 99.99 % pure zinc target and 99.99 % pure rods of aluminium were 

sputtered on silicon substrates using the direct current (DC) co-sputtering technique. 

The films were then annealed in different ratios of nitrogen and oxygen at annealing 

temperatures in the range of 200 °C to 600 °C.  The structural and electrical properties 

of ZnO thin films grown were then characterized by atomic force microscopy (AFM), 

scanning electron microscope (SEM), X-ray diffraction (XRD) and Hall Effect 

measurements. From the results, all Zn films were fully converted to ZnO as confirmed 

by XRD and film with p-type conduction was successfully produced by the Al-N 

codoping method. This work also indicates that the film surface characteristics are 

strongly influenced by the annealing temperatures and the ratios of nitrogen and 

oxygen used. From the results obtained by AFM, the roughness of the surface 

structure decreased with increasing of annealing temperature in the presence of large 

amount of nitrogen.  However, SEM revealed the distinct change on thin film surface 

when the annealing temperature increased from 200 °C to 600 °C in the presence of 

oxygen and nitrogen.  P-type ZnO thin films  prepared at N2-to-O2 ratio of 50% : 50% 
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and annealed at 200 °C for 1 hour showed the lowest resistivity of 1.530 x 10-3 Ω. cm 

and the highest carrier concentration of +1.85 x 1022 cm-3.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1  II-VI semiconductor compounds 

II-VI compound semiconductors had always been an interesting classification of 

semiconductors. For over a decade, II-VI semiconductors have attracted growing 

interest owing to their possible application in opto-electronics. The wide band gap II-VI 

semiconductors are efficient emitters in the blue to ultra-violet (UV) spectral range and 

are likely candidates to replace materials like GaN in light emitting laser diodes 

(Gutowski, 2002). Despite some similarities, each of the II-VI semiconductors 

demonstrates their own unique and novel physical properties. These compounds 

mostly crystallize in the cubic (zinc blende) or hexagonal (wurtzite) structure. These 

structures occur in a wide range of various band gaps and lattice constants as shown 

in Table 1.1.  

 

The band gaps have a major influence on the properties of the material. This includes 

the properties like optical absorption, electrical conductivity and index of refraction. 

Materials are normally classified according to the type of band gap as direct or indirect 

semiconductors. The direct band gap semiconductors are found to be advantageous 

over indirect band gap semiconductors, as they do not require phonons to satisfy wave 

vector conservation. Most of the II -VI compounds are found to exist as direct band gap 

semiconductors and have been dominating the optical field for short wavelength 

applications. They are used in various applications such as light emitting diode (LEDs) 

and ultraviolet photodetector (Fasol, 1997), UV blue semiconductor laser (Bagnall, 

1997) and so on.  

 

A common characteristic that all II-VI semiconductors share is an ability to form into the 

wurtzite crystal structure. The structural characteristics of wurtzite can be illustrated    
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by zinc sulfide (ZnS). The structure of ZnS, for example, can be simply described as a 

number of alternating planes composed of tetrahedrally coordinated S2- and Zn2+ ions, 

stacked alternatively along the c-axis (figure 1.1 (a)). ZnS has band gap energy of 3.6 

eV (Pawaskar, 2002), displays a high refractive index  and high transmittance in the 

visible range (Falcony, 1992, Xu, 1999), thus become a strong candidate for use in 

opto-electronic devices. They are still the only materials with which green lasers could 

be obtained. 

 

Zinc blend is the second common structure for the II-VI compound semiconductor 

(figure 1.1 (b)). Bulk ZnS, for example, is the most typical example of the structure. 

 

 

Figure 1.1 (a) The wurtzite ZnS structure and (b) the zinc blend structure for the II-VI 
semiconductors (Ma, 2004). 

 
 

Zinc oxide (ZnO) is also one of the II-VI compounds with some exceptional and 

comparable properties to their III-V counterparts. In Table 1.1, the properties of the 

most popular wide band gap semiconductors are compared. 

 

 
 
 

       (a)      (b) 
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Table 1.1 Comparison of the properties of ZnO with that of other wide gap 
semiconductors (Chen, 1998). 
 

Material Structure Lattice constant Band gap at RT 
(eV) 

  a (Ǻ) c (Ǻ)  
ZnO Wurtzite 3.249 5.207 3.37 
ZnS Wurtzite 3.823 6.261 3.80 

ZnSe Zinc blende 5.668 - 2.70 
GaN Wurtzite 3.189 5.185 3.39 

6H – SiC Wurtzite 3.081 15.12 2.86 
 

1.2  The research objective 

To realize the light emitting devices, an important issue to be resolved is the fabrication 

of p-type ZnO with a high hole concentration and a low resistivity. However, achieving 

p-type material is not an easy task due to the self-compensated effect of the native 

defects. There has been work that focused on the synthesis of p-type ZnO doped with 

N (Guo, 2001, Ryu, 2000). Minegishi et.al (1997) reported the p-type ZnO films grown 

by chemical vapor deposition from a powder of ZnO source where the N source was 

NH3 with purified hydrogen gas acting as carrier. The resulting p-type ZnO films 

showed hole concentration of 1.5x1016 cm-3 and a resistivity of 100 Ω.cm. Since then, 

several works were engaged in this investigation of codoping method. More works are 

still needed in order to produce a viable p-type ZnO and to understand the formation 

and its behaviour.  

 

In view of the above, present work involves an investigation to produce p-type ZnO by 

using DC magnetron sputtering via codoping method by utilizing aluminium (Al) as a 

donor and nitrogen (N) as an acceptor. As most of the research has been focused at 

annealing temperature of above 700 °C, we will be investigating the role of lower 

annealing temperature (< 700 °C) with different gas ratios of nitrogen and oxygen on 

the structural and electrical properties of ZnO thin films. Some of the ZnO films will be 

grown on p-type (111) silicon substrates since it offers a very attractive opportunity to 
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incorporate future ZnO-based devices onto silicon-based integrated circuits even 

though sapphire and glass substrates could produce better quality ZnO films. This work 

will involve the deposition of Zn from Zn target with Al incorporation by DC magnetron 

sputtering. The annealing will be performed at varied temperature from 200 °C to 600 

°C to realize Al-N codoped ZnO with the flow of nitrogen and oxygen gases at different 

ratio such as 10:0, 7:3, 5:5 and 0:10.  The surface morphologies of the ZnO film are to 

be investigated by scanning electron microscopy (SEM) and atomic force microscopy 

(AFM) while the crystallinity of the films will be determined by X-ray diffraction (XRD) 

analysis. The energy dispersive X-ray (EDX) will be used for compositional analysis of 

the fabricated ZnO films. The carrier’s concentration and mobility as well as the 

electrical resistivity of the films will be investigated by using the Hall measurement 

technique whereby the results obtained would be correlated with the structural 

properties of the ZnO films. 

 

1.3  Outline of the thesis 

Chapter 1 provides the introduction that includes the objective of the present work. 

 

Chapter 2 discusses in detail the properties of zinc oxide, current issues about the 

development of zinc oxide and its application, literature survey on the various 

techniques followed by sputtering theory and current state of research in zinc oxide. 

 

Chapter 3 describes the processing technique and the description of the procedures 

involved in fabricating codoped zinc oxide films. 

 

Chapter 4 presents the results obtained in this work and the related discussion. 

 

Chapter 5 summarizes conclusions drawn from this research and provides suggestions 

for future work improvements. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 The introduction of zinc oxide (ZnO) 

The growth and characterization of II-VI semiconductor ZnO and ZnO-based alloys 

including MgZnO, CdZnO and MnZnO have been actively investigated for the last three 

decades or so for its promising semiconductor device applications in the electronics as 

well as optoelectronics operating in the blue and ultraviolet (UV) region of the light 

spectrum. The focus on the II-VI semiconductor have been motivated by the lack of 

semiconductor materials satisfying commercial demands for blue, green and UV lasers 

and light emitting devices in last decades. The research works have been also 

encouraged by explosion of demands on various applications such as flat panel 

displays (Ghis, 1991), solar cell (Sang, 1998), gas sensor (Dayan, 1998) and surface 

acoustic wave devices (Gorla, 1999). 

 

It is known that producing p-type ZnO is difficult because of its tendency to be n-type. 

As grown ZnO is n-type due to structural defects from the growth process, such as 

oxygen vacancies, zinc interstitials, and antisites. An antisite occurs when a nucleus of 

one species occupies a lattice site that is typically occupied by another species, such 

as a zinc nucleus on an oxygen site in the lattice. A vacancy is an unoccupied lattice 

site, resulting in unsatisfied bonds within the lattice. An interstitial defect is a nucleus 

that does not occupy a lattice site, perturbing the periodic potential that gives rise to the 

ideal band structure.  The ZnO has wurtzite hexagonal structure as shown in figures 

2.1 and 2.2, with a wide band gap of 3.37 eV at room temperature. Table 2.1 indicates 

the properties of the ZnO and other popular wide band gap semiconductors (Chen and 

Yao, 1998).  
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Figure 2.1 Wurtzite structure of ZnO (large ball – Zn, small ball – O) (Kaldis, 1981). 

 

Figure 2.2 Hexagonal close – packed (hcp) structure of ZnO (Kaldis, 1981). 

 

Zn 
O 
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The most desirable feature of zinc oxide is to have the largest exciton binding energy of 

60 meV as compared to 24 meV for GaN, which is the key parameter that enables the 

UV laser diode and other exciton related light emitting devices to be operated at room 

temperature and makes ZnO a brighter emitter. Unlike GaN, ZnO can be grown in bulk, 

also compatible with wet etchants and does not need dry etching. ZnO is one of the 

“hardest’’ materials in II – VI compound semiconductors due to the higher melting point 

and large cohesive energy. It can be expected that a degradation of the material due to 

the generation of dislocations during the device operation will be reduced.  The 

constituent elements of ZnO are abundant and of low cost. Also the material is 

nontoxic, which is an important consideration for environment. 

 

Table 2.1 Comparison of the properties of ZnO with that of other wide band gap 
semiconductors (Chen, 1998). 
 

 

2.2 Some current issues about the development of ZnO research 

2.2.1 Substrates 

One of the major problems which always affect the progress of ZnO research has been 

lack of a suitable material that is lattice matched to the ZnO. It has been established 

that the crystal structure of epitaxial ZnO is most strongly influenced by the substrate 

used. 
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Currently, the most common substrate material used for the growth of ZnO is sapphire 

(or Al2O3), despite having a lattice mismatch between the ZnO and sapphire of 18.4% 

(Ozgur, 2005). The crystal structure of sapphire is shown in figure 2.3. The use of 

sapphire is most probably due to its low cost, its ease of handling, its transparent 

nature, hexagonal symmetry with lattice constant of a =4.785 Ǻ and c=12.991 Å and its 

stability at high temperatures. 

  

  

  

  

  

  

  

 

Figure 2.3 The hexagonal crystal structure of sapphire (Imawa, 1982). 
 

Other than sapphire, the other commonly used substrates for ZnO epitaxy is AlN. AlN is 

a wide band gap III-V semiconductor with direct band gap of 6.2 eV at room 

temperature (Yamashita, 1979) and has hexagonal structure with lattice constant of a= 

3.111 Ǻ and c= 4.982 Ǻ  as shown in figure 2.4. Due to its large band gap, AlN is 

transparent from infrared to near UV wavelengths (3 to 0.3 μm) and can be used as 

window material for near UV and infrared. AlN has high thermal conductivity, high 

resistivity and low thermal expansion. It has the potential for the applications in high 

performance electronic industry as integrated circuit package and heat sinks. However, 

some disadvantages such as its high cost and the small number of available 

manufacturers which produce AlN have made AlN less popular as a substrate for ZnO 

from a manufacturing point of view. 
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Figure 2.4 Hexagonal wurtzite structure of AlN (Large ball-Al, small ball-N) (Imawa, 
1982). 

 

At present, most of the commercial electronic devices are based on silicon. The 

development of modern semiconductor industry leads to much matured techniques for 

producing and processing high quality silicon wafers. Besides being used extensively in 

semiconductor industries, silicon is also widely used in the scientific research, either as 

subjects aimed for the generation of new silicon based devices or as substrate 

materials for developing other new functional materials. Figure 2.5 shows a schematic 

of diamond silicon crystal structure with lattice constant of a= 5.430 Ǻ. Silicon is widely 

used as substrates in thin film growth processes because the material is much cheaper 

as compared to other single crystalline materials (examples sapphire, AlN, MgO etc). 

Large size silicon wafers can be obtained commercially with low cost and can be cut to 

any size to fit the requirements of deposition process. It is highly desired to integrate 

semiconductor thin films with silicon substrates. In this case, most of the advantages of 

modern semiconductor industries can be used in the later device development. 

Furthermore modern semiconductor industry can provide low cost silicon wafers with 

various properties required by customers. 

 

Al 

N 
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Figure 2.5 Schematic diamond crystal structure of silicon (Iwama, 1982). 

 

2.2.2 Doping of ZnO 

Doping has always been an issue in wide band gap materials because as the band gap 

of a material increases it becomes difficult to dope them in symmetry (p-type and n-

type). For example, doping diamond p-type is very easy as compared to that of n-type. 

Similarly, there are quite a few issues in doping p-type GaN while it is easier to make n-

type GaN. However, wide band gap of ZnO materials pose special challenges in 

getting p-type semiconductor. 

 

ZnO with a wurtzite structure is naturally an n-type semiconductor because of a 

deviation from stoichiometry due to the presence of intrinsic defects such as O 

vacancies (Vo) and interstitials (Zni). Undoped ZnO shows intrinsic n-type conductivity 

with high electron densities of about 1021 cm-3 (Minami, 1985). It is externally doped to 

produce films of higher conductivity and high carrier concentrations. Many researchers 

have worked on doping ZnO n-type using group III elements like aluminium (Al), 

gallium (Ga) and indium (In) (Chang, 2003). This process was found to produce ZnO 

films with more n-type conductivity, improving its transparency and conductivity. A 

study by Igasaki et.al (2001) proved that doping of ZnO had improved not only the 
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electrical properties of the film but also its thermal stability. Among all n-type dopants 

being used, aluminium is found to be the best dopant as it produces films with the 

highest conductivity and transparency as compared to any other dopant. Aluminium 

doped zinc oxide (AZO) is deposited using various techniques such as pulsed-laser 

deposition, radio frequency (rf) magnetron sputtering, chemical vapor deposition, spray 

pyrolysis and the sol-gel process. 

 

On the other hand, efforts to obtain p-type doping have resulted in heavily 

compensated and highly resistive films, which cause the development of a reliable p-

type doping technique for ZnO remains a primary challenge for researchers. The 

difficulties can arise from a variety of causes. Dopants may be compensated by low 

energy native defects, such as Zni or Vo (Walukiewicz, 1994). Low solubility of the 

dopant in the host material is also another possibility. Deep impurity level can also be a 

source of doping problem, causing significant resistance to the formation of shallow 

acceptors. 

 

Known acceptors in ZnO include group I elements such as lithium (Li) ( Schimer, 1968, 

Valentini, 1991, Zwingel, 1970),  natrium (Na), silver (Ag) and group V elements such 

as nitrogen (N) and phosphorus (P). However, many of these do not contribute 

significantly to p-type conduction. It is believed that the most promising dopants for p-

type ZnO are the group V elements, although theory suggests some difficulty in 

achieving shallow acceptor level (Park, 2002).  

 

A number of groups have expended a good deal of effort in an attempt to realize p-type 

ZnO using nitrogen (N) as a possible shallow acceptor dopant. Various type of nitrogen 

sources including N2, NO, N2O, NH3 and Zn3N2 have been used depending on the 

growth technique. Iwata et.al (2000) has attempted p-type doping of ZnO using 

molecular beam epitaxy (MBE) by simultaneously introducing O2 and N2 through a rf 
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plasma source. Although a carrier concentration as high as 1019 cm-3 was obtained, p-

type conduction was not achieved. However, some promising results were reported 

recently. Look et.al (2002) reported p-type ZnO by MBE with N doping using Li-diffused 

semi-insulating ZnO substrates and an N2 rf plasma source.  

 

Li et.al (2003) claimed to have succeeded in p-type doping of ZnO films, by reacting 

diethyl zinc (DEZn) with NO gas. In this case, NO gas was used to supply both O and 

N for p-type doping. Results indicated that N can be incorporated into ZnO films without 

plasma or high temperature process and a high N concentration was obtained only 

under Zn rich conditions as predicted by Yan et.al (2001). Nevertheless, reproducibility 

still remains to be a major problem and this must be resolved before ZnO can be used 

in opto-electronics applications such as homojunction LEDs and laser diodes (LDs). 

 

2.3 Applications of ZnO 

Zinc oxide (ZnO) is no stranger to scientific study. In the past 100 years, it has been 

featured as the subject of thousands of research papers, dating back as early as 1935 

(Bunn, 1935). Valued for its ultra violet absorbance, wide chemistry, piezoelectricity 

and luminescence at high temperatures, ZnO has penetrated far into industry and is 

one of the critical building blocks in today’s modern society (Lide, 1992). It 

encompassed applications in paints, cosmetics, plastic and rubber manufacturing, 

electronics and pharmaceuticals.  

 

Research on this material revealed that its properties like crystal structure, band gap 

and some of its physical and electrical properties are favourable to the extent of 

replacing some of the materials that are being used as lasers and as window layers in 

solar cells. A brief comparison of zinc oxide with other materials with similar 

applications is described in the following sections. 
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2.3.1 Zinc oxide as transparent conductive oxides (TCO) 

Zinc oxide, besides being one of the important materials in the classification of wide 

band gap materials, is one of the important transparent conductive oxides (TCO). 

Being abundant in nature it is available at lower cost compared to tin and indium, the 

increasing used materials as TCOs. It has the added advantage of being non-toxic and 

it can be deposited at relatively low temperatures. Zinc oxide has very good optical and 

electrical properties. According to Lee et. al (2002), these properties for ZnO could be 

either a match or exceed the properties for tin or indium tin oxide (ITO).  TCO such as 

indium-tin-oxide (ITO), Al-doped zinc oxide (AZO) and Zn-doped indium oxide (IZO) 

have attracted much interest in the application of optoelectronic devices such as solar 

cells and liquid crystal displays due to their high conductivity and high transparency in 

the visible region. 

 

Table 2.2 Some properties of transparent conducting oxides at room temperature. 

Compound Structure 
type Cell dimensions (Ǻ) Resistivity 

Ω.cm 
Band – 

gap (eV) 
Refractive 

index 
  a B c    

SnO2 Rutile 4.7371 - 3.1861 10-2 – 10-4 3.7 – 4.6 1.8 – 2.2 

InO3 Bixbyite 10.117 - - 10-2 – 10-4 3.5 – 
3.75 2.0 – 2.1 

ITO Bixbyite 10.117-
10.310 - - 10-3 – 10-4 3.5 – 4.6 1.5 – 2.1 

CdSnO4 SrPbO4 5.5684 9.8871 3.1933 10-3 – 10-4 2.7 – 3.0 2.05 – 2.1

ZnO Wurtzite 3.2426 - 5.1984 10-1 – 10-4 3.1 – 3.6 1.85 – 
1.90 

 

The other major disadvantage of TCO is that it has less light-trapping ability leading to 

a limitation in cell performance. Muller et al (2000) have found that a post deposition 

chemical etching step textures of ZnO: Al films resulted in lowering the resistance of 

these films. It is also found that these films when incorporated in amorphous-Si solar 

cells produced an initial efficiency that is higher than commercially available TCO 

substrates. This is the important reason that prevents TCO from being used for large 

area module manufacturing (Muller, 2001, Ryu, 2000). With these advantages, the 
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usage of ZnO and Al-doped ZnO is increasing in the industry today. Table 2.2 shows 

some properties of TCOs (Bube, 1986).  

 

2.3.2 Zinc oxide for opto-electronics 

Gallim nitride (GaN) is used as the major source for blue lasers since the mid 1990s. It 

is also used extensively in fabricating devices like piezoelectric and waveguide 

devices, light emitting diodes and photodetectors. However, ZnO has emerged as a 

possible competitor in opto-electronic applications as the structure and the band gap of 

zinc oxide prove promising for these applications. Studies have proved that ZnO could 

be used as the substrate for GaN films as both the materials share the same structure 

(Ryu, 2000). The exciton binding energy, the important property for any optical device 

like LEDs and lasers is 60 meV in ZnO, which is 2.4 times that of GaN. This is the 

reason why ZnO is considered as a prospective candidate for these devices (Zhang, 

2002). Apart from these optical properties, ZnO has some interesting physical 

properties that have made it more attractive in this field. With a melting point of 2000 

°C, it is sufficiently stable at high temperatures. This is an important requirement during 

doping and formation of ohmic contacts. The higher hardness, resistance to 

mechanical stress and high melting point temperature of a material also expand the 

lifetime of LEDs and blue laser diodes (Ryu, 2000). Therefore, ZnO as a potential wide 

band gap material can be used in short wavelength light emitting devices such as light 

emitting diodes, photodetectors, electroluminescence devices and the next generation 

of UV semiconductor lasers (Zhang, 2002).  

 

Table 2.3 highlights some of the keys properties of ZnO and provides the comparison 

with GaN. The factor of p-type doping in ZnO has initiated the interest for this research. 

A brief description of doping and the work by many researchers on this topic is further 

discussed in this chapter. 
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Table 2.3 The comparison between ZnO and GaN (Ozgur, 2005). 

Property ZnO GaN 

Energy band gap, Eg (eV) 3.37 3.39 

RT exciton binding energy 

EB (meV) 
60 25 

RT stable phase Wurtzite Wurtzite 

ao (Å) 3.25 3.12 

co (Å) 5.21 5.19 

Bulk growth Yes Difficult 

Epitaxial growth Yes Yes 

 

 

2.4 Deposition techniques 

ZnO films can be deposited by a variety of techniques such as: 

 

2.4.1 Plasma-Enhanced Metalorganic Chemical Vapor Deposition (PEMOCVD): (Dhar, 

2005, Vispute, 1998). 

 

PEMOCVD is one of the most attractive techniques for synthesis of high perfection 

ZnO films at low and moderate temperatures. The system consists of continuously 

pumped horizontal quartz tube placed between copper plates to which RF power 

(13.56 MHz) is used to excite plasma in the reaction chamber and to dissociate Zn 

vapor. The base unit is equipped with a resistive-heated evaporator where quartz 

ampoule containing Zn is placed. Figure 2.6 shows a schematic of the plasma reactor 

for this technique. Crystalline sapphire (001), silicon (100) and SiO2 / Si substrates can 

be used for deposition of ZnO thin films. 
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Figure 2.6 Plasma-Enhanced Metalorganic Chemical Vapor Deposition system (Dhar, 
1995). 
 
 
 

2.4.2 Molecular Beam Epitaxy (MBE): (Norton, 2004, Hong, 2001, Murphy, 2005). 

 

In this technique, the growth is performed under clean, low pressure conditions where 

the potential for contamination is minimized. The wafer on which growth occurs is held 

at an elevated temperature so that arriving Zn and O atoms have sufficient energy to 

move around on the surface of the wafer and find their correct bonding positions. The 

source materials for the growth are very pure Zn metal, which is evaporated from an 

oven toward the wafer, and atomic oxygen derived from plasma or ozone source. MBE 

is capable of layer – by – layer growth with excellent control of the purity and crystalline 

quality of the resulting film. Figure 2.7 shows a typical MBE system. 
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Figure 2.7 Schematic of MBE system (Vispute, 1998). 

 

2.4.3 Pulsed Laser Deposition (PLD): (Vispute, 1998). 

 

A focused laser pulse is directed onto target of material in a vacuum chamber (Figure. 

2.8). The laser pulse locally heats and vaporizes the target surface, producing an 

ejected plasma or plume of atoms, ions, and molecules. The plume of material is 

deposited onto an adjacent substrate to produce a crystalline film. This technique 

possesses several favorable characteristics for growth of multicomponent materials, 

such as stoichiometric transfer of the target material to the substrate, compatibility with 

a background gas, and atomic level control of the deposition rate. In this method, 

oxidation of Zn primarily occurs in the ZnO ablation plasma plume, thus alleviating the 

difficulties encountered with MBE of ZnO, where oxidation proceeds via surface 

reactions. 
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Figure 2.8 Schematic of PLD system (Norton, 2004). 

 

2.4.4 Spray Pyrolysis Deposition (SPD): (Okuya, 2004, Pushparajaht, 1994, Afify, 

2005). 

 

 Because the film formation is carried out in air by a simple apparatus in SPD, the 

technique is one of the most attractive film preparation methods. SPD is essentially the 

same film processing technique as so-called pyrosol technique, in which a source 

solution is sprayed on the heated substrate, where a film is deposited (see Figure 2.9). 

In other words, when a source solution is atomized, small droplets splash and 

vaporizes on the substrate and leaves a dry precipitate in which thermal decomposition 

occurs. Organometallic compounds such as lithium, copper, and magnesium are used 

as source materials as well as zinc which are dissolved in water, ethanol, or other 

solvents to prepare source solutions. Since the source materials dissolve in a solvent 

as an ion, oligomer, or cluster depending on their chemical properties, the surface 

morphology of deposited films is easily controlled by choosing species of the source 

materials. 
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Figure 2.9 Schematic representation of a spray pyrolysis deposition (SPD) (Okuya, 
2004).  

 
 
 

2.4.5 Magnetron Sputtering: (Kim, 1997, Yeom, 1989, Bose, 1996, Cebulla, 1998). 
 

The planar magnetron sputtering source was invented at the beginning of the 

seventies (Ellmer, 2000). This technique is now one of the most versatile used for 

the deposition of transparent conducting oxides (TCO). The fundamental difference 

between magnetron sputtering as a plasma process and thermally excited thin-film 

preparation methods (evaporation, chemical deposition methods) is the much 

higher energy input into the growing film that can be achieved by magnetron 

sputtering. This technique is characterized by the following advantages such as low 

substrate temperature, good adhesion of films on substrates, high deposition rates 

(up to 12 μm min−1), very good thickness uniformity and high density of the films, 

good controllability and long-term stability of the process, able of forming many 

compounds from elemental (metallic) targets and relatively cheap deposition 

method (Ellmer, 2000). The magnetron sputtering was used in the present work 

and a general discussion on the principles of magnetron sputtering will be 

presented. 
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2.5 Sputtering theory 

Many methods can be used to deposit metallic thin films. The two most common 

methods are evaporation and sputtering. Evaporation is performed by simply 

placing the metal to be evaporated into a bowl. The substrate on which the film is to 

be deposited is placed at a desired distance from the bowl. The closer the substrate 

to the bowl, the faster a thin film will grow on the substrate. The metal is heated 

under vacuum until it melts and evaporates onto the substrate. Anything in the line 

of sight of the target will be coated with the evaporated metal.  

 

The basic feature of a magnetron discharge is the confinement of the plasma in 

front of the target. This is achieved by the combination of electric and magnetic 

fields (Bunn, 1935). In standard sputtering processes, there are usually two modes 

of powering the magnetron sputtering system. These two modes are direct current 

(DC) magnetron sputtering or by radio frequency (RF) magnetron sputtering. In DC 

magnetron sputtering, a direct voltage is applied between the cathode and anode. 

This method works well with conductive targets (zinc, molybdenum, silver, 

aluminum, etc). This mode was mainly employed in the present study.  

 

Sputtering is a removal of surface atoms due to particle bombardment which is 

caused by atomic collisions at the surface of a target. The process was first 

reported by Grove (1853), who observed metallic deposition within a discharge 

tube. The sputtering process is no longer an unwanted effect destroying cathodes 

or contaminating plasmas, but is nowadays a widely used method for surface 

cleaning and deposition of thin films and functional coatings. 

 

 The material to be deposited (target) acts as the cathode and is connected to a 

negative voltage supply which could be either DC or RF. The substrate is placed on 

a substrate holder and could be grounded, floating, biased, heated, cooled, or could 
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be a combination of these. The substrates are placed exactly above the target. This 

setup is placed inside a vacuum system which is pumped down and maintained at 

high vacuum. An inert gas like argon is introduced into the system as the medium 

for glow discharge. This is because an inert gas like argon has its metastable 

energy greater than its first ionization potential which helps in producing a sufficient 

supply of ions for self sputtering. When this glow discharge is initiated, ions with 

high kinetic energy strike the cathode and the subsequent collisions knock loose 

the neutral atoms from the material by momentum transfer. These neutral atoms 

then condense on the substrate to form thin films. The principle of momentum 

transfer used to deposit materials has made the sputtering technique very attractive 

and shown in figure 2.10. Using this technique it is easy to deposit materials which 

could not be easily deposited using other techniques.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 A sputtering technique used to deposit thin films of a material onto a 
substrate (http://en.wikipedia.org/wiki/Sputter_deposition). 

 
 
 
 

 Although the glow discharge sputtering technique seems to be a powerful 

deposition technique, the major disadvantage of this technique is its low ionization 

efficiency. In the case of magnetron sputtering, the ionization efficiency is improved 
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by using a magnetic field parallel to the cathode surface and thus restraining the 

primary electron motion to the vicinity of the cathode. These trapped electrons thus 

move inside the orbit and gain a higher mean free path and collisionally scattered 

before reaching the anode. Consequently, magnetron sputtering requires lower gas 

pressures to sustain the plasma as compared to that of the diode sputtering 

technique. Reduced scattering and increased electron usage efficiency leads to a 

better deposition rate and reduced applied voltage to sustain plasma in this 

technique. 

 

2.6  Metal-semiconductor contact 

The metal-semiconductor contact or metal-semiconductor junction is undeniably an 

essential part of all semiconductor devices.  In order to form a reliable and a quality 

device, an ideal or a high quality metal-semiconductor junction must be formed 

according to the design requirements of the device.  Moreover, many of the useful 

properties of a p-n junction can be achieved by simply forming an appropriate metal-

semiconductor contact.  Basically, metal-semiconductor contacts can be categorized 

into two types:  the rectifying metal-semiconductor contact, which is equivalent to a p-n 

junction diode and the non-rectifying (ohmic) metal-semiconductor contact. This metal-

semiconductor contact play an important role in all the semiconductor devices 

particularly when high-speed rectification is required and are very attractive due to their 

fabrication simplicity.   

 

In ideal metal-semiconductor contact theory, a metal-semiconductor junction may form 

an ohmic contact or rectifying contact as shown in figure 2.11.  
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In many cases we wish to have an ohmic metal-semiconductor contact, having a linear 

I-V characteristics in both biasing directions either in forward bias (positive bias to the 

p-type semiconductor) or a reverse bias (positive bias to the metal). For example, the 

surface of a typical integrated circuit is a maze of p and regions, which must be 

connected and interconnected. It is important that such contacts be ohmic, with 

minimal resistance and no tendency to rectify signals. 

 

2.7  Current state of research in ZnO 

In past years, many researchers have investigated thin film fabrication processes of 

ZnO. In most ZnO devices, the crystalline quality of the film is a key property. For 

example, ZnO films should have highly c-axis preferred orientation for application of 

longitudinal bulk wave transducers and SAW filters (Lee, 1998). The crystalline quality, 

in particular the preferred orientation, depends on sputtering parameters and the nature 

of the substrate. Under optimized conditions, the c-axis orientation is frequently 

observed in sputtered polycrystalline films even on a glass substrate. This is 

reasonably understood since the c-plane of the ZnO crystallites corresponds to the 
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Figure 2.11 Rectifying (a) and linear or ohmic (b) I – V characteristics of metal 
semiconductor interface. 
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densest packed plane. Sputtering has proven to be a successful method of coating a 

variety of substrates with ZnO thin films for applications in piezoelectric transducers, 

photoconductors and photonic. 

 

Among possible dopants, nitrogen appears to be a more promising choice than other 

impurities since it is a known p-type dopant for ZnSe. Acceptor concentrations as high 

as 1018 cm-3 were obtained in ZnSe samples grown by molecular beam epitaxy (MBE) 

using nitrogen atom beam doping (Park, 1990). An early N-doped, p-type ZnO result 

was reported by Minegishi (1997). The p-type ZnO films were grown by chemical vapor 

deposition (CVD) from a ZnO source powder with excess Zn onto a heated (650 – 800 

°C) sapphire substrate. The N source was NH3
 carried by purified hydrogen gas, which 

is introduced during deposition. The resulting ZnO films had hole concentrations up to 

1.5x1016 cm-3 and a resistivity of about 100 Ω.cm.  

 

One problem with N-doping is the low solubility of nitrogen in ZnO (Lee, 2001). 

Yamamoto (1999)  proposed that the solubility of nitrogen can be increased by 

introducing group III codopant such as Al, Ga or In. Yamamoto  calculations showed 

that reactive codopants such as Al, Ga and In could form complexes with nitrogen, 

which enhance the incorporation of N-acceptors and thus produce p-type ZnO 

(Yamamoto, 1999). Joseph (1999) reported p-type results by codoping ZnO with Ga 

and N. 

 

Sieber (1998) reported the microscopic characterization of reactively sputtered ZnO 

films with different Al-doping levels using co-sputtering from separate Zn and Al targets. 

At low Al concentration, typical columnar structure was observed. As the Al doping 

level increased, fine crystallites appeared on the substrate surface and columnar grains 

started growing onto them. Finally, the structure of ZnO films was changed to fine 
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