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PERKEMBANGAN LNA INDUKTIF-TERNYAHJANA BAGI APLIKASI W-
CDMA  MENGGUNAKAN TEKNOLOGI 0.18 μm RFCMOS 

  
ABSTRAK 

 
 

Satu metodologi terperinci dan bersistematik untuk merekabentuk penguat 

hingar rendah (LNA) induktif ternyahjana kaskod, juga dikenali sebagai topologi 

Padanan Masukan dan Hingar Serentak (SNIM), bagi aplikasi penerima penukaran 

terus (DCR) Jalur Lebar – Kod Pembahagian Berbilang Capaian (W-CDMA) 

diberikan dalam tesis ini. Frekuensi operasi adalah 2.14 GHz dengan voltan 

bekalan 1.8 V dan menggunakan proses 0.18-µm 6-logam 1-poli RFCMOS. Ini 

diikuti dengan analisa litar dan metodologi rekabentuk yang terperinci serta 

perbandingan perlakuan bagi beberapa LNA terbitan SNIM. Topologi yang terpilih 

ialah SNIM dengan Kekangan Kuasa (PCSNIM), Guna-semula Arus (CR) dan 

Kaskod Terlipat (FC). Keputusan menunjukkan bahawa bagi aplikasi voltan rendah, 

FC memberikan kelelurusan yang baik pada nilai angka hingar (NF) yang 

berpatutan. Namun, gandaan kuasanya adalah yang terendah. Prestasi SNIM LC-

terpadan dan CR adalah setara, tetapi SNIM LC-terpadan bersaiz besar. Dalam 

keadaan simulasi yang serupa, PCSNIM menambahbaikkan angka hingar sebanyak 

37% daripada yang dipamerkan oleh SNIM. Ini membuktikan keberkesanan 

penambahan satu kapasitor merintangi transistor masukan litar. Satu rekabentuk 

PCSNIM dengan keluaran berpenimbal telah dihasilkan untuk mengekalkan merit 

NF PCSNIM terpadan yang konvensional ke atas SNIM terpadan, tetapi dengan 

kelebihan ruang bentangan yang jauh lebih kecil. Gandaan kuasa SNIM dan 

PCSNIM LC-terpadan, serta PCSNIM dengan keluaran berpenimbal adalah agak 

setara tetapi kedua-dua PCSNIM kalah dari segi kelelurusan. Namun, PCSNIM 

dengan penimbal keluaran adalah lebih baik bagi integrasi litar kerana saiznya yang 

lebih kecil. S12 lebih baik daripada -30 dB dihasilkan oleh semua topologi 

membuktikan keupayaan litar kaskod untuk memencilkan keluaran daripada 
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masukan. Terbitan yang terperinci bagi gandaan voltan, S-parameter dan hingar 

bagi SNIM diberikan dalam tesis ini. Terbitan dilaksanakan menggunakan Matlab 

dan disahkan melalui perbandingan dengan hasil simulasi Cadence SpectreRF. 

Lebar transistor penguat bagi semua topologi (kecuali CR) adalah 290 μm, 

ditentukan melalui kaedah Pengoptimuman Hingar dengan Kekangan Kuasa 

(PCNO). Analisa yang komprehensif tentang kesan keadaan ekstrim terhadap 

prestasi LNA diberikan dalam tesis ini. Dua jenis simulasi pasca-bentangan telah 

dilaksanakan, mereka adalah rintangan teragih – kapasitor parasitik – kapasitor 

gandingan dan parasitik terkumpul. Perbandingan dan analisa dilakukan ke atas 

keputusan daripada simulasi pra- dan pasca-bentangan dengan keputusan 

daripada pengukuran. Simulasi pasca-bentangan menghasilkan keputusan yang 

menghampiri pengukuran dalam kebanyakan kes.  
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DEVELOPMENT OF INDUCTIVELY-DEGENERATED LNA FOR W-CDMA 
APPLICATION UTILIZING 0.18 μm RFCMOS TECHNOLOGY 

 
ABSTRACT 

 
 

A detailed and systematic methodology on the design of the inductively-

degenerated cascode LNA, also known as the Simultaneously Noise and Input 

Matching (SNIM) LNA, for Wideband-Code Division Multiple Access (W-CDMA) Direct-

Conversion Receiver (DCR) is presented in this thesis. The operating frequency was 

2.14 GHz with a supply voltage of 1.8 V and implemented on Silterra’s 0.18-µm 6-

metal 1-poly RF CMOS process. This is followed by comprehensive circuit analysis, 

design methodology and performance comparisons of the modified SNIM, namely the 

Power-Constrained SNIM (PCSNIM), Current-Reuse (CR) and Folded-Cascode (FC) 

LNAs. Results show that for applications with low voltage requirement, the FC offers 

good linearity at a comparable NF. However, the trade-off is the gain. CR and matched 

SNIM are comparable in all of the performance metrics, but matched SNIM posed a 

disadvantage in term of space. Under similar simulation conditions, the PCSNIM was 

able to reduce the NF of the SNIM by 37%, proving the effectiveness of adding a 

capacitor at the transistor’s input. A new modified PCSNIM with output buffer was 

designed to maintain the matched conventional PCSNIM noise figure (NF) merit over 

the SNIM, but with much less layout space consumed than by the latter. The power 

gain of the LC-matched SNIM, LC-matched PCSNIM and the new modified PCSNIM 

with output buffer are comparable but both PCSNIM lost in term of linearity. However, 

the new modified PCSNIM with output buffer will be better for circuit integration as it 

requires less space. S12 of better than -30 dB was recorded for every LNA topology 

in this work and this shows that the cascode configuration is able to to provide good 

reverse isolation. Detailed voltage gain, S-parameters and noise derivations for the 

SNIM LNA are provided in this thesis. The derivations for the voltage gain and S-

parameters were implemented using Matlab, verified with the simulation results 
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generated by Cadence SpectreRF. The transistor’s width for all the topologies except 

CR was determined at 290 μm using the power-constrained noise optimization (PCNO) 

method. Comprehensive analysis on the extreme or corner condition effects on the 

SNIM LNA performance is provided in this thesis. Two types of post-layout 

simulations were performed, they were the distributed resistance-parasitic 

capacitors-coupling capacitors and lump parasitic. Comparisons and analysis were 

made on the pre- and post-layout simulations and measurement results, and the post-

layout results were found to better resembling the results obtained from the 

measurement in most cases.  
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CHAPTER 1 
INTRODUCTION 

 
 
1.0 Motivation for the thesis 

Low noise amplifier (LNA) is the first block of any receiver system. Due to this 

fact, the LNA is considered as one of the most important stage to be designed. Thus, it 

is very important for the LNA to be performing well in order to provide the following 

stages with good signals to process. However, there is a difficulty in finding literatures 

which describe detailed methodology on designing the LNA. There is no write-up, to 

the best of the author’s knowledge, that provides comprehensive description on 

designing this circuit starting from the application specifications, to determining the 

transistor’s size, followed by the calculations on the associated passives involved, to 

the determination of the input and output matching on-chip circuitries, physical layout 

design and finally the measurement procedures and test-setup.   

 

During the design of the LNA, difficulties were met in understanding the noise 

analysis given in many textbook. Discussions on noise are extensive in books by Lee 

(2001, 2004) and Razavi (1998), but no detailed derivations were given to easily 

understand the equations. 

 

Because of its importance, many LNA topologies are available. Unfortunately, 

no literature is available on detailed comparison of these topologies starting with 

comprehensive design analysis, to simulation and characterization results comparison. 

This comparison is important as it can serve as a platform for further design 

improvements. It is observed that the basic circuitry of many of the topologies is the 

inductively-degenerated cascode. The conventional inductively-degenerated cascode 

LNA provides simultaneous noise and input matching and the topology is also known 

as SNIM (Nguyen & Lee, 2006). Studies on SNIM LNA and three modified inductively-
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degenerated cascode topologies were made. The modified designs chosen were the 

power-constrained simultaneously noise and input matching (PCSNIM) from Nguyen & 

Lee (2006), the current-reuse (CR) from Karanicolas (1996) and the folded-cascode 

(FC) from Nguyen et al.(2004). Finally, a new LNA circuit was designed that combines 

the PCSNIM with an output buffer circuit resulting in better noise performance and 

superior on-chip matching.  

 

1.1 Problem statements 

 Detailed methodology in designing LNAs from the initial stage of understanding 

the application specifications to determining the transistors’ sizes, associated passives 

involved, on-chip matching circuitries, physical layout design, and finally the test set-up 

for the characterization of the fabricated designs are unavailable to the best of the 

author’s knowledge. The chosen LNA topology to be designed is the inductively-

degenerated cascode LNA, which is also known as SNIM. This topology was chosen 

as it is the basis for many of the LNA designs presently available due to its ability to 

provide simultaneous noise and input matching. 

 

Detailed analysis on the noise and gain calculation of the inductively-

degenerated cascode LNA is unavailable to the best of the author’s knowledge. 

Presently available literature analysis on these two very important performance metrics 

of the LNA are not very detailed. Hence, a comprehensive description of this analysis is 

paramount. 

 

There are not many literatures on comprehensive comparison between 

presently available LNAs in terms of the design analysis and simulation results. The 

chosen topologies are the SNIM, PCSNIM, CR and FC. PCSNIM, CR and FC were 

chosen as they are evolutions from the conventional state-of-the-art inductively-

degenerated cascode LNA (SNIM). 
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1.2 Objectives 

 Concurrent to the problems that had been stated in (1.1), the following 

objectives were set to tackle these problems: 

 

1. To design an LNA with good noise and gain performances following the 

specifications set by the W-CDMA standard. 

 

2. To study a suitable topology for the LNA in a W-CDMA DCR such as the the 

inductively-degenerated cascode. Subsequently, detailed noise, gain and S-

parameter analysis of the chosen topology will be performed from the small-

signal model incorporating the capacitances for high frequency analysis.  

 

3. To study and analyze the modified circuits of the inductively-degenerated 

cascode LNA such as the PCSNIM, CR and FC LNAs and make comparison on 

the merits of each one with reference to their noise figure and gain 

performances.  

 

1.3 Contributions 

 The following are the contributions from the accomplishments of this project : 

 
1. A modified inductively-degenerated cascode LNA design with PCSNIM merits 

and output buffer for on-chip matching enhancement was designed. 

 

2. A systematic and detailed methodology on designing the inductively-

degenerated cascode LNA was presented. The methodology starts from the 

determination of the standard specifications, followed by derivations for the 

noise, gain and S-parameters from the small signal analysis of the schematic, 
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the calculations for the passive components, implementation of on-chip 

matching circuitry, and finally the chip characterization. 

 

3. Detailed noise, gain and S-parameters analysis with extensive derivations from 

the small-signal model of the inductively-degenerated cascode LNA were given. 

 

4. Comparative study of the designs and simulated performances of the PCSNIM, 

CR and FC LNA topologies with reference to the inductively-degenerated  

cascade (SNIM) LNA were detailed out in this thesis. 

 

1.4 Organization of the thesis 

The thesis starts with the Introduction in Chapter 1.  In this chapter, the thesis 

motivation, problem statements, project objectives, contributions  and organization of 

thesis are given.  

 

An overview of the wireless standard for the application of the LNA’s in this 

work and the receiver topology where the LNA is to reside are given in Chapter 2. 

Specifications of the standard and characteristics of the receiver are given in this 

chapter as they are important to be known prior to designing the LNA. Specifications of 

the wireless standard become the bench mark for the LNA’s performance. In this work, 

the LNA is for the W-CDMA application and the intended receiver is the direct-

conversion type as it is the best architecture for this wireless standard due to the high 

integration level that it is capable of. High level of integration in a transceiver 

architecture is very important especially in wireless and portable systems. 

 

Chapter 3 is on the introduction to the amplifier topologies and LNA 

performance metrics.  This chapter states the functions of the LNA with its design 
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goals, and describes the different amplifier topologies available namely the common-

source amplifier with shunt-input resistor, common-gate amplifier, shunt-series 

amplifier, inductively-degenerated common-source amplifier, inductively-degenerated 

cascode amplifier and lastly, the differential inductively-degenerated cascode amplifier. 

As for the LNA performance metrics, the S-parameters, gain, linearity and noise 

definitions and descriptions are given.  

 

Chapter 4 covers the analysis of five LNA topologies, which includes the 

conventional inductively-degenerated cascode amplifier (also known as SNIM) and its  

modifications. The modified SNIM LNA topologies studied are the PCSNIM, CR and 

FC. Merits and weakness of each design are included in the analysis. Finally, a 

desription of the modified PCSNIM LNA designed in this work is given here. 

 

The LNAs design methodologies are given in Chapter 5. This chapter starts 

with the methodology in designing the SNIM LNA. An explanation on the power-

constrained noise figure optimization technique to determine the LNA transistor’s width 

that can provide the optimum noise performance is given here. This is followed by the 

methodology in calculating the passive components constructing the LNA. 

Subsequently, the determination of the current mirror components values were 

elaborated. The conventional basic current mirror became the standard biasing circuit 

in every LNA design in this work. The determination of the input and output matching 

circuitries were given in the next section followed by the layout design issues in the 

final section. The methodologies in designing the PCSNIM, CR, FC and the new 

PCSNIM with output buffer LNAs are thoroughly discussed in this chapter. 

 

The LNA design analysed in this work were simulated and the SNIM and 

PCSNIM LNA topologies were characterized. The results of the simulation and 

measurement are given in Chapter 6. Pre- and post-layout simulations were performed 
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and comparisons between the two were made and differences explained. Finally, the 

simulated performances of the LNAs are compared with the specifications imposed by 

the W-CDMA standard. In order to characterize the fabricated design, test setup has to 

be constructed. Chapter 6 gives the test-bench setup for the measurement of the 

single-input LNA. The set-ups are for measuring the DC, S-parameters, P1dB and noise. 

Naturally, the subsequent section will be on the measurement results on the various 

experiments performed on the inductively-degenerated cascode LNA. 

 

Chapter 7 concludes the findings of the work in this project. It also includes 

future work that can be performed to further develop the research on the LNA. 

 

Additional to the seven chapters described, important theories and derivations 

are included in the appendices. These materials may help in enhancing the 

understanding of certain calculations utilized in the designing of the LNAs. Appendix A1 

is on the derivations to show the relationship between the reflection coefficients.and the 

S-parameters. Appendix A2 consists of the derivations of the harmonic and inter-

modulation products using the Taylor’s series expansion. Appendix A3 contains 

derivations for determining the current in saturation for short channel devices. Appendix 

A4 shows the derivations involved in generating the power dissipation, PD, versus ρ 

noise contour plots. Appendix A5 is on the derivations for obtaining PD versus Q factor 

noise contour plots. Appendix A6 is on the Matlab codes and solutions for determining 

S11, S21 and S22. Appendix A7 has the derivations for determining inductances of the 

CR LNA. Appendix A8 displays the microphotographs of the SNIM and PCSNIM LNAs 

fabricated. Their layouts are also given as comparisons. Besides these, the layout 

diagrams of the CR, FC and the newly designed PCSNIM with output buffer are also 

shown. Finally, Appendix A9 shows the values of Q of the inductors characterized by 

Silterra at 2.45 GHz.  
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CHAPTER 2 
OVERVIEW OF THE RECEIVER ARCHITECTURES AND W-CDMA 

REQUIREMENTS 
 
 
2.0 Introduction  

It is very important to choose and understand the receiver architecture where 

the LNA will reside. This is so that the merits and problems of the architecture are 

considered during the design stage of the LNA. Equally important (if not more) is the 

wireless standard that will be applied to the LNA. The specifications imposed by the 

standard will be the benchmark to the performance required from the LNA. 

 

In the past few decades, the wireless communication has become very popular 

that it has shaped the trend in transceiver designs. Modern receiver designs are 

focused on increasing the integration level between RF and mixed-mode circuitries. 

The move is towards producing “single-chip radios”. There are a number of receiver 

architectures which had been and still are very popular in radio designs such as the 

superheterodyne receiver. Besides this, there is the direct-conversion receiver (known 

also as DCR or DICON) and its spin-off such as the Low-IF. Another architecture that is 

worth mentioning is the Wideband-IF Receiver. 

 

 The DCR is the receiver architecture that seems to be the most appropriate 

choice for achieving full circuit integration on chip. Full circuit integration is of utmost 

importance in the present portable and wireless technology transceiver design as this 

is how multiple radio standards can be accommodated in one radio. Besides this, full 

integration will result in smaller radio size and consequently, better portability.  DCR’s 

architecture is less complex and smaller in size since there is less number of blocks 

due to the elimination of multiple IF stages and image reject and RF filters. Due to this 

simple architecture, the DCR is capable of lowering the power consumption and 

fabrication cost when compared to superheterodyne.  
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 Another advantage of DCR is that it uses only LPFs after down-conversion. For 

the wireless standard like the Wideband-Code Division Multiple Access (W-CDMA), the 

channel bandwidth is adjustable at 5 MHz, 10 MHz and 20 MHz to support the signal 

bandwidth of 3.84 Mcps, 8.192 Mcps and 16.384 Mcps respectively. This requirement 

makes the DCR to be the best architecture for this application as the different 

bandwidth of the receiver can be obtained by altering the cut-off frequency of the 

integrated LPF (Pretl et al., 2000b; Lie et al., 2002). Adjusting the cut-off frequency of a 

LPF is much simpler than changing the bandwidth of a BPF at high frequency.  

 

 The LNA designed in this project is for the W-CDMA application. Due to the 

capabilities of the DCR, this LNA has to reside in a DCR environment. All issues 

related to a DCR will have to be taken into consideration during the design period.  

However, what is more important is understanding the requirement set by the W-CDMA 

standard as this will form the design goals of the LNA. 

 

  The W-CDMA system is for the third-generation (3G) cellular communication. 

W-CDMA uses the Direct Sequence Code Division Multiple Access (DS-CDMA) 

signaling method to gain higher speed and to support more users as compared to the 

previous second-generation wireless telephone standard (2G) Global System for 

Mobile Communications (GSM) which employs Time Division Multiple Access (TDMA) 

signaling method (Pärssinen, 2001).  

 

W-CDMA is also commonly known as Universal Mobile Telecommunications 

System (UMTS). UMTS is the 3G standard in Europe whereas W-CDMA is the 

standard for 3G in Japan.  Irrespective of what it is known as, W-CDMA (or UMTS) is a  

mobile communications technology that can cater data transmission speeds up to 2 

megabits per second (Mbps). Actual speeds are lower at first due to the capacity limit 

on the network. The present 3G systems are commonly using 384 kbps of data rate. 
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W-CDMA or UMTS has a transmitting frequency band in the range of 1920-

1980 GHz. The received frequency band is in the range of 2110-2170 GHz.   

 

2.1 Receiver types 

2.1.1 Superheterodyne receiver 

A
D

A

D

Pre-select 
filter  

Antenna

LNA
Image-

reject filter Mixer

LO

VGA

Mixer I

Mixer Q

LO2

Channel-
select 
filter I

I

Q

Channel-
select filter  

90°

Channel-
select 
filter Q

VGA I

VGA Q

 
Figure 2.1: A typical superheterodyne receiver with a quadrature demodulator (Zou et 
al., 2004; Ryynanen, 2004). 

 

The present domination in receiver architecture is by the superheterodyne 

receiver. The receiver’s architecture is shown in Figure 2.1. Heterodyne means two 

signals of different frequencies combined to produce the sum and difference of the 

original frequencies. The RF signal that reaches the antenna is first fed into a filter 

which is of the band-pass type (this filter is also called pre-select filter, selecting the 

frequency bandwidth of interest). The function of this filter is to remove the out-of-band 

signals. The signal is then amplified by a low noise amplifier (LNA). This amplifier is not 

only to amplify the small magnitude RF signals, but more importantly it amplifies with 

the least addition of noise to the system. The LNA has a very strict noise performance 

requirement. The LNA output is then filtered by an image-reject filter.  This filter is to 

remove the image, which is a side effect of the mixing process. The image signal has 

an offset of twice the intermediate frequency from the desired channel signal 
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frequency. Subsequent to the filter, the signal is down-converted to the intermediate- 

frequency (IF) by the mixer. An IF signal is obtained when the signal at the desired 

frequency and another signal generated by a local oscillator (LO) are mixed. In a 

receiver, down-mixing is performed, i.e. the IF signal’s frequency is the difference 

between the RF and the LO frequencies. In a transmitter, the opposite is performed, 

i.e. up-mixing to produce an IF signal which frequency is a summation of the RF signal 

with the LO. Down-mixing is performed in a receiver to ease amplification and rejection 

of the unwanted signals prior to the baseband circuitries. The conversion to the 

baseband may require several IF stages.  

 

Figure 2.1 shows a receiver which has two of such stages. The output of the 

mixer is then fed to a channel-select filter that performs channel selection at the IF, and 

a variable gain amplifier (VGA) will further amplify the filter’s output.  Subsequently, 

demodulation or detection is carried out to retrieve the desired information.  

 

Main disadvantages of the superheterodyne receiver architecture are its cost, 

large power consumption and size. Significant contributors to the cost are the RF, 

image and IF filters (Razavi, 1997). The large power consumption is also due to the 

losses in these external filters (especially ceramic band pass or SAW filters), which 

have to be compensated by having amplifying sections. These filters are the 

components that limit the level of miniaturization, the minimum cost, and the minimum 

power dissipation that can be achieved. Nevertheless, since 2002, the Bulk Acoustic 

Wave (BAW) filters have started to gain popularity due to their compatibility with VLSI 

and CMOS processes and high frequency capability (up to 8 GHz) with good rejection 

of 40 dB and small size (1.5 x 2 x 0.6 mm) (Aigner, 2003; Leti, 2006). However, due to 

the many filters required by the superheterodyne, the size of the integrated transceiver 

will still be huge. 
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Having the possibility of requiring multiple IF stages means a possibility of 

increasing fabrication cost and power consumption too. Due to the large number of 

blocks, a superheterodyne receiver might not be the right choice  to fulfill the need for 

full transceiver integration required by the present portable and wireless technology 

although it is still considered as the most sensitive and selective architecture.  

 

Extensive research had taken place to achieve good performance with any 

other possible receiver architectures more suitable for integration. The direct- 

conversion receiver was deemed most appropriate for highest level of integration. 

 

2.1.2 Direct-conversion receiver (DCR) 

90°

 

 
Figure 2.2: A direct-conversion receiver (Springer et al., 2002; Zou et al., 2004; and 
Ryynanen, 2004). 
 

A DCR block diagram is shown in Figure 2.2. A DCR is not new, it was in fact 

invented many decades ago. It was invented in the same era as superheterodyne. 

DCR was an option to the superheterodyne, but it was not as popular as it has many 

drawbacks. However, DCR has made a comeback recently and this is due to the 

improvement in IC technologies. DCR’s past failures were from effects that could not 
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be removed in discrete implementations, but may be controlled and suppressed in 

integrated circuits. DCR drawbacks can be overcome by using more transistors and 

this is possible as the IC technology has advanced tremendously.  

 

 Also called zero-IF or homodyne conversion, DCR is an efficient approach to 

downconvert a signal from RF straight to baseband in one step. This is achieved by 

mixing the RF with an oscillator signal of the same frequency. Since the DCR converts 

the carrier of the desired channel to zero frequency immediately in the first mixers,  

there is no longer a necessity for extra down conversion circuitries for final 

downconversion. This also means that multiple local oscillator circuitries can be 

eliminated. Hence, due to the less number of blocks, the architecture becomes less 

complex and consumes less power. As the RF signal being directly converted to 

baseband, the DCR employs low pass filters (LPF) for filtering out unwanted 

interferers. LPF (which is by design less complex than BPF) and baseband amplifiers 

can be implemented on chip, making the goal of producing a fully integrated receiver 

possible. The cost of producing this type of receiver is also reduced due to the absence 

of the expensive filters at RF (for image rejection) and at IF (for channel selection).  

 

 Since DCR directly converts RF to baseband, no image rejection filter is 

required. This is an advantage as an image reject filter is a high-selectivity high 

frequency BPF, and therefore this filter is only possible to be implemented off-chip. 

Hence, there will exist problems in matching the LNA with this off-chip image reject 

filter as what is faced by a superheterodyne receiver. Since a DCR’s LNA need not 

drive the 50 Ω load as there is no image reject filter, the DCR suffers much less from 

mismatch-induced effects as compared to the superheterodyne receiver which has  this 

image-reject block. If the BAW filters are to be implemented in the superheterodyne, 

the DCR will still be having an advantage as it consumes less space due to the 

absence of the image reject and IF filters.  
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 To summarize, the DCR enables higher level of integration as it is simpler, 

smaller in size and less costly compared to the superheterodyne. This architecture has 

a  potential to accommodate multiple radio standards with different channel bandwidths 

(i.e. wide frequency band) on one chip. However, there are some drawbacks with DCR 

including dc offsets, LO self-mixing, flicker (1/f) noise, and even-order nonlinearities, 

which post a great challenge to designers (Namgoong & Meng, 2001; Manku, 2003). 

DC offsets from various sources lie directly in the signal band of interest, and in the 

worst case they can saturate the back-end of the analogue receiver at high gain 

values.  One way to overcome this problem is to use a variable gain LNA to cater for 

very small to large amplitude signals. The drawbacks of the DCR are elaborated and 

discussed further in Section 2.2. 

 

 The DCR is not free from drawbacks and there are a few receiver architectures 

designed to overcome these problems. These architectures are the Low-IF and the 

Wideband receivers.  

 

2.1.3 Low-IF receiver 

90°

 

 
Figure 2.3: Block diagram of low-IF receiver (Pärssinen, 2001). 
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Figure 2.3 illustrates the block diagram of a low-IF receiver. The low-IF receiver 

differs from DCR in that the first IF is placed above dc (does not convert the signal 

directly to baseband) but its frequency is lower than half of the system reception 

bandwidth, i.e. < <IF system0 f B 2 .  This receiver architecture was originally proposed to 

reduce the drawbacks of a DCR. 

 

How “low” is the IF of a Low-IF receiver? If the lowest IF (next to dc) is chosen, 

flicker noise, self-mixing and envelope distortion should be considered (just like in a 

DCR) but the image rejection requirement is relaxed. If the higher IF is chosen, the 

problems above can be avoided because there is no signal information at around dc. 

Thus, dc offsets can be filtered without signal information being removed. The 

drawbacks, however, are that the 2nd order nonlinearity still exists and now a strict 

image reject requirement is imposed. 

 

From the block diagram in Figure 2.3, the signal is divided into quadrature 

branches in the first downconversion. This is to separate the unwanted image from the 

desired channel (Pärssinen, 2001). However, matching between the I and Q branches 

is critical if sufficient image rejection is to be achieved.  

 

The channel selection is performed with a BPF. Because of the low frequency 

operation, this filter can be integrated as it now becomes possible to design a high 

order filter using low frequency IC filtering techniques such as Gm-C or switched 

capacitor filters. A LPF, in fact, should be sufficient to perform this function, but a BPF 

has the capability to remove static offsets. 

 

Low-IF has a limitation of only 30 to 55 dB of image suppression achieved with 

on-chip matching, whereas in an application like W-CDMA, strict image reject 
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requirement of at least 40 dB is required to pass the adjacent channel selectivity test 

(Pretl et al., 2000b). 

 

2.1.4 Wideband-IF receiver 

 

90°

90°

 

Figure 2.4: Block diagram of the wide-band IF receiver (Pärssinen, 2001). 
 

 With the objectives to not only mitigate the problems created by image 

frequency rejection strict requirement in order to have a fully integrated transceiver, but 

also to reduce the drawbacks of a DCR, designers have come out with an architecture 

that can accomplish both desires. An image rejection receiver as shown in Figure 2.4 is 

suitable for integration. This receiver has two downconversion stages but performs the 

channel selection completely after the second downconversion. However, the 

architecture becomes more complex than the DCR due to the existence of the second 

stage mixers.  
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In general, the LNA is always the first block to receive the RF signal from the 

pre-select filter. The receiver architectures maybe different, but the performance 

requirements for the LNA are very similar. The main differences between the different 

architectures, however, are the output load, reverse isolation, and the different spurious 

signals on-chip. The LNA load can be an external filter or an on-chip device. If the load 

is not an external filter, the interface between the LNA and mixer can be altered to 

optimize receiver performance. If the load is an external filter having an input 

impedance of 50 Ω, then the design becomes tougher as an output driver maybe 

required. As consequences, the gain and power consumption are not optimized. In 

term of reverse isolation, this parameter becomes important if the LO frequency is in 

the reception band of the receiver. The LNA may need high reverse isolation in order to 

prevent self mixing. 

 

2.2 Issues in receiver topologies 

2.2.1 Superheterodyne receiver 

 

ωLOcos t

 
Figure 2.5: Simplified block diagram of a superheterodyne receiver (Larson, 1998). 

 

Figure 2.5 shows the simplified block diagram of the superheterodyne receiver. 

The mixer performs two types of mixing, one is the up-conversion mixing and the other 

is down-conversion mixing.  For the up-conversion mixing: 

ω +ω = ωRF IFLO   (2.1) 

 
For the down-conversion mixing: 



 17

 ω −ω = ωRF IFLO            (2.2) 

Up-conversion mixing is used in transmitters whereas down-conversion mixing is 

employed in receivers to ease the baseband processing. 

 

RF

LO

IMAGE

ωLO ωI MωRF

ωIF ωIF
 

 
Figure 2.6: RF, LO and Image relationship. 
 

Another by-product of the mixing is the image signal. This signal can be 

represented by the following Equation 2.3 (Razavi, 1998) and is shown in Figure 2.6. 

 

ω = ω +ω = ω + ωIM IF RF IFLO 2           (2.3) 

 

Here, ωIM is the image angular frequency. If the image is not properly 

attenuated, it will be fed to the mixer and subsequently will be mixed with the LO. 

Mixing will produce components at ω ±ωIM LO (Razavi, 1998).  

 

ω +ω = 2ω +ωIM IFLO LO         (2.4) 

ω = ω −ωIF IM LO          (2.5) 

 

The frequency ωIF in Equation (2.1) can be easily filtered out by the channel 

select filter, but components at the frequency of Equation (2.2) really fall on the desired 
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signal frequency. An image reject filter is therefore very necessary to be placed before 

the mixer to filter out the image signal.  

 

(a) Trade-off between image rejection and interferers’ suppression  

In real situation, the wanted signal will not be the only signal captured by the 

receiver, but with it comes interferers as well. The interferers that are of great concern 

are the ones that are very close to the frequency of interest. Besides the interferers, 

there will also exist the image signal whose method of generation had been discussed 

previously.  

 

Referring to Equation (2.3), the image signal frequency, ωim , is located two 

times the intermediate signal frequency, ωIF2 , away from the frequency of the signal of 

interest, ωRF (Razavi, 1998). If the IF is high, the image will be located far from the 

frequency of the signal of interest. Hence, the image reject filter will be able to greatly 

attenuate this image signal. Unfortunately, it is very difficult to obtain a highly selective 

filter to operate in the GHz range. So, the image reject filter will not be able to attenuate 

the nearby interferer signals much, and subsequently, this interferer signals will also be 

mixed with LO. As a result, unwanted signals near to IF will be produced. If the IF is 

high, then selectivity of the IF filter is also not that good and therefore the nearby 

interferers will still remain at significant levels at the output of the IF filter. On the other 

hand, if the IF is low, the image signal will be too close to the signal of interest, the 

image reject filter will not be able to attenuate the image signal much and this image 

signal ( together with the interferer signal ) will still be mixed with LO. Since the IF is 

low, an IF filter with high selectivity is obtainable and due to its high selectivity, the filter 

can filter out the interferers easily. However, the image signal that was not suppressed 

appropriately by the image reject filter will fall exactly on the wanted signal after mixing 

and this will corrupt the downconverted signal (Abidi, 1995b, Razavi, 1997). Figure 2.7 
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shows this image rejection and interferers’ suppression trade-off phenomena. 

 

IFω
ωω

IF2ω IMωRFω

IF2ω IMωRFω
ω

IFω
ω

 
Figure 2.7: Image rejection versus interferer’s suppression (Razavi, 1998) for (a) High- 
IF and (b) Low-IF. 
 

To overcome this trade-off, both the image reject filter and the IF filter require 

highly selective transfer functions that are actually impractical to implement on-chip. 

Therefore, the solution has always been to employ external, bulky filters such as 

surface acoustic wave (SAW) devices (Jensen et al., 2000, Reynolds et al., 2003a). In 

addition, most systems will utilize two IF filters from two stages of mixing to 

compromise between the two rejections. This results in more oscillator circuits, a more 

complex and large circuitry. A fully integrated circuit is quite impossible to be achieved 

from this type of receiver. However, with the recent development in the BAW filters, 

there seems to a light at the end of the tunnel for fully integrated superheterodyne 

transceivers. Unfortunately, the limitation is on the size of the integrated 

superheterodyne as it requires many filters and more complex circuitries compared to 

the DCR. 
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(b) 50 Ω impedance requirement 

Filter typically has a 50 Ω input and output impedance.  Due to the existence of 

the off-chip duplex and image reject filter, the LNA has to be input and output matched 

to 50 Ω. This off-chip implementation adds another set of trade offs among noise, 

linearity, gain, and power dissipation of the LNA (Pärssinen et al., 1999). 

 

2.2.2 DCR 

 

ωLOcos t

ωLOsin t

 
Figure 2.8: Simplified DCR block diagram. 
 

 Although DCR is known for its potential in fully implementing integrated blocks 

of the transceiver, there are a few design issues existing in DCR (Gharpurey et al., 

2003). As it is known, the RF and LO in a DCR are both at the same frequency and this 

contributes to an IF of 0. The mixer in a DCR will produce components at ωRF2 and 0, 

that is 

 

ω +ω = ωRF RFLO 2          (2.6) 

and 
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ω −ω =RFLO 0           (2.7) 

 

 The components with the ωRF2 can be easily filtered by the low pass filter. The 

desired signal band in a DCR has a carrier at baseband as shown by Equation 2.7. 

Hence, most of the problems in a DCR arise from both static and dynamic low-

frequency distortion terms that fall in this baseband. These distortion terms are 

generated from the coupling between the LO and RF signals and also from 2nd-order 

intermodulation products (explained in greater detail in Sub-section 3.3.2) that are 

produced by the quadrature mixers and the subsequent baseband amplifiers and 

filters. These blocks can translate any signal with amplitude variations to the baseband 

frequency where the desired signal lies. 

 

 Since DCR  frequency band of interest lies at 0 carrier frequency, the issues 

mentioned are most severe in DCR compared to superheterodyne ( whose carrier is at 

IF ). The issues associated with low-frequency distortion terms that fall in the baseband 

can be divided into four categories and are explained below.  

 

(a) DC offsets 

 Downconverted band in DCR is at zero frequency. Thus, any dc offset voltages 

can corrupt the signal. The most critical case is when these dc voltages are large 

enough to affect the biasing of the transistors in the circuits of the following stages (this 

condition can disrupt the amplification of the desired signal) (Khalil et al., 2003, 

Ryynanen, 2004). The causes of the dc offsets can be better explained by the following 

diagrams. 

 

 Capacitive and substrate coupling will cause a feedthrough (also called LO 

leakage) to occur when there is an imperfect isolation between the LO port and the 
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inputs of the LNA and the mixer. This phenomena is shown in Figure 2.9. If the LO is 

provided externally, the offset will arise from bond wire coupling. 

ωLOcos t

 
Figure 2.9: LO leakage due to imperfect isolation between the LO port and the inputs of 
the LNA and mixer (Razavi, 1998). 
 

ωLOcos t

 
Figure 2.10: Interferer leakage due to large interferer that leaks from the mixer input to 
the LO port (Razavi, 1998). 

 

 When feedthrough occurs, leakage signal will reach the mixer and subsequently 

mixed with the LO signal, creating what is known as “self-mixing”. Self-mixing can 

generate dc components which can saturate the following stages. LO signal can also 

leak to the antenna through the mixer and LNA as these blocks have finite reverse 

isolation. This leaked signal is radiated and will become an in-band interferer to nearby 

receivers that are tuned to the same frequency band (Abidi, 1995b). The leakage signal 

can also be reflected from moving objects back to the receiver. This leakage is an 
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important issue especially in DCR as the LO frequency is the same as the RF 

frequency, and hence the leakage signal falls in the frequency band of interest. Similar 

effect occurs if large interferer leaks from mixer input to LO port. This condition is called 

interferer leakage. This phenomena is shown in Figure 2.10. 

 

(b) Flicker noise 

 The downconverted signal at the output of the mixer is usually very small, in 

tens of microvolts. The input noise of the subsequent stages, like the amplifiers and 

filters, is therefore still critical. The signal of interest at this stage is located around zero 

frequency and thereby is susceptible to the flicker noise (1/f noise). Flicker noise is a 

severe problem in MOS circuitries (Abidi, 1995a, Razavi, 1997, Ryynanen, 2004). Due 

to this problem, a relatively high gain in the RF range is desirable. High gain can be 

achieved through the use of active mixers rather than passive mixers. 

 

 Flicker noise arises from random trapping of charge at the oxide-silicon 

interface of MOSFETs. Represented as a voltage source in series with the gate, the 

noise density is given by (Razavi, 1999, 2001) 

 

2
n

2

ox

K 1
v = Δf

WLC f
           (2.8) 

 

where 2
nv   is the  mean square noise voltage in V2, Κ  is a process-dependent 

constant in C2/m2  , W and L are the  width and length of the transistor, respectively, in 

m, f is the operating frequency in Hz, Δf is the noise bandwidth in Hz over which the 

measurement is made, and finally, oxC  is the oxide capacitance in F/m2. 

 

 While the effect of flicker noise may seem negligible at high frequencies, this 

effect is an issue in DCR as the carrier is directly converted to baseband. From  
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Equation (2.8), it can be seen that the effect of flicker noise is reduced by incorporating 

very large devices. 

 

(c)  Even-order distortion 

 Typical superheterodyne RF receiver are affected by only odd-order 

intermodulation effects as the IF is at quite a high enough frequency. In a DCR where 

the RF is directly converted to baseband, even-order distortion also becomes a 

problem as this distortion occurs at baseband. Second order nonlinearity can be 

characterized using the second-order intercept point, IP2. To address the problem of 

even-order distortion, there are design techniques available that makes achieving high 

second order linearity possible. Examples are by utilizing capacitive degeneration and 

ac coupling in the mixer circuit. Differential mixer topology will also be less susceptible 

to this second-order distortion. Trying to mitigate the problem of even-order distortion at 

the LNA stage is quite difficult as the antenna and duplex filter are typically single-

ended due to the requirement of the power amplifier in the transmit path of the 

transceiver. Converting the single output from these blocks to differential signals (if 

differential LNA is to be used) requires an extra element like the balun. Unfortunately, 

transformers generate losses at high frequencies which will increase the overall noise 

figure (Razavi, 1997). 

 

(d)  LO leakage 

 As has been mentioned previously, this leakage results in dc offsets 

(Ryynanen, 2004). Besides this, if the LO signal leaks to the antenna and gets 

radiated, this signal creates interference in the band of other receivers using the same 

wireless standard. In superheterodyne receivers, this issue is less severe because the 

LO frequency in these receivers are typically out of the reception band. 

 

 With the advancement of IC technology, the problem of LO leakage becomes 
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