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PENYEDIAAN DAN PENILAIAN PENJERAP BERASASKAN TANIN 

BAKAU UNTUK PENYINGKIRAN ION LOGAM BERAT 

 DARIPADA LARUTAN AKUEUS 

 

ABSTRAK 

 

Struktur oligomer poliflavonoid tanin bakau yang diekstrak daripada kulit bakau 

Rhizophora apiculata dan prestasi penjerap berasaskan tanin (TBA) terhadap 

penjerapan ion logam berat daripada larutan akueus telah dikaji. Kulit bakau 

Rhizophora apiculata yang dikumpulkan merupakan hasil buangan daripada industri 

arang kayu di Kuala Sepetang, Perak, Malaysia. Sifat-sifat kimia tanin bakau yang 

diekstrak melalui kaedah pengekstrakan pepejal-cecair dengan menggunakan larutan 

akueus aseton/air (7:3, v/v) telah dianalisis. Kajian FTIR and NMR berkeadaan 

pepejal mengesahkan bahawa tanin bakau mengandungi prosianidin dalam nisbah 

yang tinggi berbanding dengan prodelfinidin dengan rangkaian dominan antara 

flavonoid adalah C4-C8 dan konfigurasi cis- di C2 dan C3 membentuk kumpulan 

oligomer yang besar. Analisis MALDI-TOF bagi tanin bakau Rhizophora apiculata 

menunjukkan bahawa tanin mengandungi oligomer prosianidin yang terdiri daripada 

katecin/epikatecin, epigallokatecin dan epikatecin gallat wujud dalam nisbah yang 

besar. Oligomer tanin mencapai sehingga nonamer dengan unit ulangannya adalah 

528 – 529 Da merupakan dimer katecin gallat yang telah kehilangan kedua-dua 

residu asid gallik dan kumpulan hidroksil merupakan spesies dominan. Seterusnya 

wujud oligomer tanin untuk kedua-dua jenis yang dihubung secara kovalen. TBA 

yang dihasilkan daripada prarawatan tanin bakau dengan formaldehid dalam keadaan 

bermangkin asid, TBA(A) dan bes, TBA(B) telah dicirikan dengan analisis FTIR, 



 

 xxi 

NMR berkeadaan pepejal dan unsur CHN menunjukkan pembentukan rangkaian 

metilin selepas prarawatan. TBA(A) dan TBA(B) merupakan penjerap 

berdominankan liang meso dan masing-masing mempunyai pHzpc 3.45 dan 4.09. 

Penjerapan ion logam kuprum (II), plumbum (II), kromium (III) and (VI) pada 

TBA(A) dan/atau TBA(B) telah dinilai. Kesan daripada beberapa parameter seperti 

pH awalan, dos penjerap, kepekatan awalan ion logam dan masa persentuhan telah 

dikaji. Untuk kes-kes penjerapan ion logam kuprum (II), kromium (III) dan plumbum 

(II), pH penjerapan optimum adalah melebihi pHzpc TBA(A) dan/atau TBA(B). Ion 

kromium (VI) pula menunjukkan pH penjerapan optimum di bawah pHzpc TBA(B). 

Data penjerapan pada keseimbangan telah dipadankan dengan model-model isoterma 

seperti Langmuir, Freundlich, Sips dan Dubinin-Radushkevich. Penjerapan 

heterogenus ion-ion logam berat yang dikaji menunjukkan kapasiti penjerapan 

lapisan tunggal mengikuti turutan ion logam plumbum (II) > kromium (VI) > 

kromium (III) > kuprum (II). Purata tenaga penjerapan (E) untuk ion logam yang 

dikaji adalah di antara 8 dan 16 kJ/mol iaitu dalam julat tenaga untuk tindak balas 

penukaran ion kecuali untuk ion kuprum (II). Penjerapan fizikal juga terlibat dalam 

penyingkiran ion kuprum (II). Kajian kinetik menunjukkan penjerapan ion logam 

yang diselidik mengikuti tindak balas tertib kedua dengan kehadiran pembauran 

filem dan antara partikel dengan proses penjerapan adalah dikawal oleh pembauran 

filem.  
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PREPARATION AND EVALUATION OF MANGROVE TANNINS-BASED 

ADSORBENT FOR THE REMOVAL OF HEAVY METAL IONS  

FROM AQUEOUS SOLUTION 

 

ABSTRACT 

 

The polyflavonoid oligomeric structures of mangrove tannins extracted from the 

barks of Rhizophora apiculata and performance of tannins-based adsorbent (TBA) 

on the adsorption of heavy metal ions from the aqueous solutions were explored. The 

barks of Rhizophora apiculata mangrove were collected as the waste product from 

the charcoal industry in Kuala Sepetang, Perak, Malaysia. Mangrove tannins 

extracted with acetone/water (7:3, v/v) by using the solid-liquid extraction method 

were subjected to various analyses to characterize their chemical properties. FTIR 

and solid-state NMR study confirmed that mangrove tannins have high proportions 

of procyanidins to prodelphinidins with the predominant interflavonoid linkages of 

C4-C8, and flavonoid units with cis-configuration at C2 and C3 formed the bulk of 

the oligomers. The MALDI-TOF-MS analysis showed that the Rhizophora apiculata 

mangrove tannins consisted of procyanidin oligomers formed by 

catechin/epicatechin, epigallocatechin and epicatechin gallate monomers are present 

in great proportions. Oligomers in tannins up to nonamers, in which the repeating 

unit at 528 – 529 Da is a catechin gallate dimer that has lost both the gallic acid 

residues and a hydroxyl group are predominant species. Futhermore, oligomers of the 

two types covalently linked to each other also occur. TBA produced from the 

pretreatment of mangrove tannins with formaldehyde in acid-catalyzed condition, 

TBA(A) and base-catalyzed condition, TBA(B) were characterized by FTIR, solid-
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state NMR and CHN elemental analysis showed the formation of methylene bridges 

after the pretreatment. TBA(A) and TBA(B) which were predominantly mesoporous 

adsorbents have pHzpc of 3.45 and 4.09, respectively. The adsorption of copper (II), 

lead (II), chromium (III) and (VI) metal ions on TBA(A) and/or TBA(B) in batch 

adsorption experiments was evaluated. The effect of several parameters like initial 

pH, adsorbent dosages, initial metal ions concentrations and contact time were 

investigated. In the case of the adsorption of copper (II), chromium (III) and lead (II) 

metal ions, the optimum adsorption pH were above the pHzpc of TBA(A) and/or 

TBA(B). Chromium (VI) ions, however, showed optimum adsorption pH below the 

pHzpc of TBA(B). The adsorption equilibrium data was fitted with isotherm models 

such as Langmuir, Freundlich, Sips and Dubinin-Radushkevich isotherm models. 

Heterogeneous adsorption of the studied heavy metal ions have the monolayer 

adsorption capacity that followed the order of lead (II) > chromium (VI) > chromium 

(III) > copper (II) metal ions. The mean adsorption energies (E) were found to be 

between 8 and 16 kJ/mol for the studied heavy metal ions which are in the energy 

range of ion exchange reaction except for copper (II) ions. Physisorption was 

involved in the removal of copper (II) ions as well. Kinetic study showed that the 

adsorption of the studied heavy metal ions followed pseudo second-order reactions 

with the presence of film and intraparticle diffusion in which the adsorption process 

was governed by film diffusion. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Tannins 

 

The term “tannins” is no longer strange in chemistry field and it comes from the 

ancient Celtic word for oak which was a typical source of tannins for leather making 

(Bisanda et al., 2003; Hagerman, 2002). According to Khanbabaee and van Ree 

(2001), the name “tannin” is derived from the French word – tanin which means a 

tanning substance and is used for a range of natural polyphenols. The ancient society 

had been using tannins to convert animal skin to form leather as tannins are able to 

interact with and precipitate proteins, including the protein found in animal skin 

(Hagerman, 2002; Khanbabaee and van Ree, 2001).  

 

Tannins are secondary metabolites widely found in plant kingdom and produced via 

condensation of simple phenolics (Chavan et al., 2001). Although tannins themselves 

are secondary phenolic metabolites, their chemical reactivities and biological 

activities have distinguished them from other plant secondary phenolics (Hagerman, 

2002). Many researchers have tried to define tannins based on their structures, 

chemical reactivities and biological activities. The complexity of tannins, however, 

has hindered their efforts to provide an appropriate definition for tannins. Bates-

smith and Swain (1962) defined tannins as water soluble phenolics with molecular 

weights between 300 and 3000 Daltons (Da), exhibit usual phenolic reactions and 

showing the ability to precipitate alkaloids, gelatins and other proteins. This 

definition, however, does not include all tannins since tannins with higher molecular 
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weight of up to 20000 Da have been isolated. Griffith (1991) described tannins as 

“macromolecular phenolic substances” and divided them into two main groups 

namely hydrolysable tannins and condensed tannins. His definition of tannins only 

covered tannins with high molecular weight and ignores the low molecular and 

monomeric tannins with a molar mass below 1000 Da (Khanbabaee and van Ree, 

2001). Haslam (1989) in an attempt to emphasize the multiplicity of phenolic groups 

characteristic of tannins has substituted the term “polyphenol” for “tannin”. He noted 

that tannins with molecular weight up to 20000 Da have been reported and tannins 

complex not only with proteins and alkaloids but with certain polysaccharides as 

well (Hagerman, 2002). 

 

Recent work by Khanbabaee and van Ree (2001) based on the molecular structures 

of known tannins, their origin and role in plant life have defined tannins as 

polyphenolic secondary metabolites of higher plants, and are either galloyl esters and 

their derivatives; in which galloyl moieties or their derivatives are attached to a 

variety of polyol-, catechin- and triterpenoid cores (gallotannins, ellagitannins and 

complex tannins), or they are oligomeric and polymeric anthocyanidins that can 

possess different interflavanyl coupling and substitution patterns (condensed tannins). 

 

 

1.1.1 Classification of tannins 

 

The complexities of tannins do not constitute a unified group, but they exhibit a 

variety of molecular structures. The tannins containing poly-hydroxylphenyl groups 

(Nakano et al., 2001) can exist in different forms of oligomers and polymers. Based 
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on their chemical structures and behavior, tannins generally can be categorized into 

two large groups, hydrolysable tannins and condensed tannins (Chavan et al., 2001; 

Nakamoto et al., 2003; Okuda et al., 1989).  

 

 

1.1.1.1 Hydrolysable tannins 

 

This class of tannins has polyol, usually D-glucose as the centre core and it is the 

starting point for many complex tannins structures. Gallic acid (1) and 

hexahydroxydiphenic acid (HHDP) (2) groups represent the polyphenolic parts in the 

molecules of hydrolysable tannins. The hydroxyl functions of the centre core polyol 

maybe partly or fully substituted through esterification with galloyl units to yield 

gallotannins like pentagalloyl glucose (3). Those having the HHDP groups have been 

named as ellagitannins like casuarictin (4) (Okuda et al., 1989). In gallotannins, the 

centre core polyol is surrounded by several gallic acid units. Further gallic acid units 

can be attached through a depside bond as shown in Fig. 1.1 (Mueller-Harvey, 2001). 

Ellagitannins are found from the oxidative coupling of galloyl groups on gallotannins 

and the simple ellagitannins are esters of HHDP. Hydrolysable tannins are 

susceptible to hydrolysis by acids, bases or esterase. Hydrolysis of gallotannins with 

strong acids will yield gallic acid and the core polyol. Meanwhile, hydrolysis of 

ellagitannins will liberate HHDP which spontaneously lactonized to ellagic acid (5) 

in aqueous solution (Hagerman, 2002). 
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Fig. 1.1   Depside bond which is formed between the phenolic group of the upper     
                and acid group of the lower gallic acid units (Mueller-Harvey, 2001). 
 

 

1.1.1.2 Condensed tannins 

 

Condensed tannins also known as proanthocyanidins are polymeric flavonoids 

(Hagerman, 2002). They comprise a group of polyhydroxy flavan-3-ol oligomers and 

polymers linked by carbon-carbon bonds between the flavonoid subunits (Schofield 

et al., 2001). The structure of flavonoid subunit, the standard letters to identify the 

rings and the numbering system are as shown in Fig. 1.2 (Hagerman, 2002; Pizzi, 

1994). Basically, flavonoid units in condensed tannins present phloroglucinol (R1 = 

OH) or resorcinol (R1 = H) A-rings and catechol (R3 = H) or pyrogallol (R3 = OH) B-
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rings. Polymeric condensed tannins composing of fisetinidin (resorcinol A-ring, 

catechol B-ring) (6) and robinetinidin (resorcinol A-ring, pyrogallol B-ring) (7) are 

called profisetinidin and prorobinetinidin, respectively. When they are composed of 

catechin (phloroglucinol A-ring, catechol B-ring) (8) and gallocatechin 

(phloroglucinol A-ring, pyrogallol B-ring) (9), the polymers are called procyanidin 

and prodelphinidin, respectively (Pizzi, 1994). The hydroxyl group at position R2 

sometime esterified with gallic acid to yield e.g. epigallocatechin gallate (R1 = R3 = 

OH, R2 = O-galloyl) (Schofield et al., 2001).  

 

 

OHO

R1

R2

R3

OH

OH
2

3
45

6

7
8

9

10

1'

2'
3'

4'

5'

6'

A

B

 

(6)   R1 = H; R2 = OH; R3 = H 
   (7)   R1 = H; R2 = OH; R3 = OH 
   (8)   R1 = OH; R2 = OH; R3 = H 

      (9)   R1 = OH; R2 = OH; R3 = OH 
 
              Fig. 1.2   Structure of flavonoid subunit, the standard letters to identify  
                              the rings, and the numbering system. 
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Flavonoid units in condensed tannins are linked together through the C4 – C6 or C4 

– C8 interflavonoid linkages. The former linkage is predominating in profisetinidin 

and prorobinetinidin. Meanwhile, C4 – C8 interflavonoid linkages are predominant 

in procyanidin and prodelphinidin (Pizzi, 1994). A typical structure model of 

condensed tannins is shown in Fig. 1.3. In general, condensed tannins possess rigid 

carbon-carbon interflavonoid bonds that cannot be broken easily by hydrolysis 

(Bisanda et al., 2003). 
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           Fig. 1.3   Typical structure of condensed tannins with C4 – C8 and C4 – C6        
interflavonoid linkages. 
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1.2 Sources of tannins 

 

Tannins are widely spread in plant kingdom. They are synthesized by a wide variety 

of plants and trees such as Acacia sp. (wattle), Eucalyptus sp., Mirtus sp. (myrtle), 

Acer sp. (maple), Betula sp. (birch), Salix Caprea (willow), Pinus sp. (pine) and 

many more (Bisanda et al., 2003). Tannins can be extracted from different parts of 

plants and are located mainly in the vacuoles or surface waxes of the plants where 

they do not interfere with the plant metabolism. Location of tannins in various plant 

tissues are (Tannins, 2001): 

 

• Bud tissues – most common in outer part of the bud, probably as protection 

against freezing. 

• Leaf tissues – most common in the upper epidermis. However, in evergreen 

plants, tannins are evenly distributed in all leaf tissues. They serve to reduce 

palatability and, thus, protect against predators. 

• Root tissues – most common in the hypodermis (just below the supervised 

epidermis). They probably act as a chemical barrier to penetration and 

colonization of roots by plant pathogens. 

• Seed tissues – located mainly in a layer between the outer integument and 

aleurone layer. They have been associated with the maintenance of plant 

doemancy, and have allelopathic and bactericidal properties. 

• Stem tissues – often found in the active growth area of trees, such as the 

secondary phloem and xylem and the layer between epidermis and cortex. 

Tannins may have a role in the growth regulation of these tissues. They are 
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also found in the heartwood of conifers and may be contributed to the natural 

durability of wood by inhibiting microbial activity. 

 

Researchers have extracted tannins from bark of Pinus radiata (Palma et al., 2005); 

leaf of Sumac (Rhus coriaria L.) (Zalacain et al., 2003); seeds of Pigeon pea 

(Ferreira et al., 2004); flowers and leaves of Crataegus (Svedström et al., 2002); 

membrane of pecan (Carya illinoensis) nut, bark of mimosa (Acacia mearnsii) and 

wood of quebracho (Schinopsis balansae) (Pasch et al., 2001), etc. In Malaysia, 

tannins have been extracted from Phyllanthus niruri or known as “dukung anak” 

(Markom et al., 2006) and mangrove barks of Rhizophora apiculata (Oo et al., 2008; 

Rahim et al., 2006). 

 

 

1.3 Mangrove in Malaysia 

 

The mangrove trees have served as one of the sources of tannins in Malaysia. 

Mangrove forests are well developed along the coastline of Malaysia, especially 

along the sheltered estuaries and deltas at west coast of Peninsular Malaysia that 

facing the Straits of Malacca. Malaysia has a vast area of mangrove forest and in 

year 2003, mangrove forests recorded a total area of 566,866 ha., 60 % are in Sabah, 

22.3 % in Sarawak and 17.6 % in Peninsular Malaysia. Islands near to the coastlines 

with well-grown mangrove forests are the six islands that made up the archipelago of 

Pulau Klang and Pulau Kukup in Johor. The reserved mangrove forests in Malaysia 

are under the management of Forestry Department to ensure the controlled 

production of wood. Malaysia today is practicing clear-filling logging system in  
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      Fig. 1.4   Matang Mangrove Forest Reserve in Perak. Matang Mangrove Forest                      
                      (a), Rhizophora apiculata mangrove tree (b) and (c). 
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which replanting of mangrove trees is done by following the cycle of 20 – 30 years. 

In Peninsular Malaysia, the Matang Mangrove Forest Reserve in Perak (Fig. 1.4a) 

covered the area of 40,151 ha. The systematic Matang Mangrove Forest management 

has been acknowledged by the international body as the most well managed system 

in the world and the forest is serving as the source for charcoal, firewood and 

construction materials like wood pillars (Bakau, 2005). Matang Mangrove Forest 

Reserve is about 51 km of coastline and 13 km wide, it stretched from Kuala Gula in 

the north to Bagan Panchor in the south (Rahim, 2005). A variety of vegetation can 

be found in Matang Mangrove Forest Reserve, among them are Rhizophoraceace. 

Two main types of Rhizophoraceace species are Rhizophora apiculata (bakau 

minyak) (Fig. 1.4b, c) and Rhizophora mucronata (bakau kurap). 

 

 

1.4 Tannins from Rhizophora apiculata mangrove barks 

 

The barks of Rhizophora apiculata mangrove (Fig. 1.5) are the waste product from 

the charcoal industry. The Kuala Sepetang Charcoal Village that is located by the 

Matang Mangrove Forest Reserve has started to exploit mangrove timber for 

charcoal production since 1930 with the introduction of the charcoal kiln (Chan, 

1985). According to one of the owners of the charcoal factories, between the two 

Rhizophoraceace species in Matang Mangrove Forest Reserve, only Rhizophora 

apiculata is allowed to be harvested for charcoal production when they reached the 

age of 30 years. In the charcoal making process, the mangrove logs are debarked 

prior to heating in the kilns as the barks contain high content of water and will 

interfere with the heating process. The barks of Rhizophora apiculata mangrove then  
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                     Fig. 1.5   Barks of Rhizophora apiculata mangrove as the  
                                     waste product from the charcoal industry. 
 

 

as the waste product will be burned off. Studies have showed that high content of 

raw tannins up to 34.68 %(w/w) could be extracted from the barks of Rhizophora 

apiculata mangrove based on the 3 days of solid-liquid extraction with 70 %(v/v) 

aqueous acetone (Yeong, 2003). Barks of Rhizophora apiculata mangrove are a good 

source of tannins as they are low in cost and abundantly available from the 

environment. The extraction of tannins from the mangrove barks involved simple 

and inexpensive methods, thus they have a great potential of commercial value. 

 

 

1.4.1 Study on Rhizophora apiculata mangrove tannins 

 

Isolation, identification and characterization of tannins from different sources have 

been conducted by many researchers. Foo (1981) has studied the B-ring 

hydroxylation pattern and the configuration of the flavonoid units of condensed 
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tannins by using IR spectroscopy. Svedström et al. (2002) has performed 

electrospray-ionization-mass spectrometry (ESI-MS), TLC and HPLC analysis on 

oligomeric procyanidins isolated from the leaves and flowers of hawthorn 

(Crataegus laevigata); HPLC/DAD and HPLC/MS qualitative analysis of condensed 

and hydrolysable tannins of commercial extract of pine barks (P. maritime L.) were 

conducted by Romani et al. (2006); Detection and characterization of 

proanthocyanidins from Quercus petraea and Q. robur heartwood by using HPLC 

and 13C NMR were conducted by Vivas et al. (2006); Characterization of high-tannin 

fractions from humus by 13C NMR with  cross-polarization and magic-angle spinning 

(CPMAS) was done by Lorenz and Preston (2002); Pasch et al. (2001) have 

elucidated the polymeric structure of quebracho and mimosa tannins by Matrix-

Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass 

spectroscopy (MS). 

 

Tannins have been extracted from Rhizophora apiculata mangrove barks from 

Matang Mangrove Forest Reserve for various application purposes. However, not 

many efforts were done to study the chemistry of Rhizophora apiculata mangrove 

tannins. A study on the mangrove barks from Tarakan, East Kalimantan reported a 

total amount of 14.9 %(w/w) of tannins were extracted from the Rhizophora 

apiculata mangrove barks with the percentage of catechin as high as 14.4 %(w/w) 

(Achmadi and Choong, 1992). Recent study by using reversed-phase HPLC showed 

that tannins extracted from Rhizophora apiculata mangrove barks from Matang 

Mangrove Forest Reserve constitute mainly of four flavonoid monomers namely 

catechin, epicatechin, epigallocatechin and epicatechin gallate, which made the 

Rhizophora apiculata mangrove tannins a condensed type (Rahim et al., 2006). This 
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study has managed to isolate and identify the monomeric flavonoid structures of 

Rhizophora apiculata mangrove tannins. However, no work has been carried out to 

determine the molecular weight and degree of polymerization of Rhizophora 

apiculata condensed tannins. Studies had showed that Rhizophora apiculata 

mangrove tannins have great potential as alternative steel corrosion inhibitors 

(Rahim et al., 2006) and as adsorbent for heavy metal ions in aqueous solution (Oo 

and Jain, 2007). Thus it is important to investigate the polyflavonoid tannin 

oligomers by using an appropriate analytical method like Matrix-Assisted Laser 

Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectroscopy (MS). 

Meanwhile, the linkages between the flavonoid units can be studied by NMR 

technique.   

 

Since its introduction by Karas et al. (1987), Matrix-Assisted Laser 

Desorption/Ionization (MALDI) mass spectroscopy has greatly expanded the use of 

mass spectroscopy towards the analysis of large molecules. MALDI mass 

spectroscopy itself has revealed as a powerful method for the characterization of both 

synthetic and natural polymers. Fragmentation of the analyte molecules upon laser 

irradiation can be substantially reduced by embedding them in a light adsorbing 

matrix. As a result, intact molecules are desorbed and ionized along with the matrix 

and can be analyzed in a mass spectrometer. This technique is mostly coupled with 

time-of-flight (TOF) mass analysers. This is so as TOF-MS present the advantage of 

being capable to provide a complete mass spectrum per event, for its virtually 

unlimited mass range, for the small amount of analyte needed and the relatively low 

cost instrument (Pasch et al., 2001). Other advantages of MALDI-TOF MS are only 

one molecular ion is formed from each parent molecule, high sensitivity across a 
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broad range of masses allows detection of oligomeric series of compounds, the 

ability to detect compounds with high molecular weight, and interpretation of 

isotopes patterns allows the detection of oligomers with small differences in mass. 

MALDI-TOF MS is ideally suited for characterizing polydispersed oligomers and 

considered as the mass spectrometric method of choice for analysis of tannins which 

exhibit large structural heterogeneity (Reed et al., 2005). Recently, the polymeric 

structures of tannins from different plant species were studied by using MALDI-TOF 

MS (Ishida et al., 2005; Xiang et al., 2006). 

 

Mass spectrometry method like MALDI-TOF MS can provide information on the 

components and molecular weight of the polymeric tannins. However, the linkages 

between the components are best studied by using the NMR technique (Mueller-

Harvey, 2001) such as solid-state NMR. Solid-state NMR is not only widely used for 

characterization of crystalline powder but also amorphous samples and polymers, 

including various plant materials (Wawer et al., 2006). Characterization of tannins 

structures by using 13C NMR has been done by many researchers like Lorenz and 

Preston (2002), Newman and Porter (1992) and Vivas et al. (2006). 

 

 

1.5 Utilization of tannins 

 

The ancient society had started to use tannins on the traditional manufacture of 

leather from animal skins by tanning them with extracts of certain woody plants 

(Achmadi and Choong, 1992; Bisanda et al., 2003; Harborne, 1984; Khanbabaee and 

van Ree, 2001; Whiting, 2001). The ability of tannins to cross-link with the protein 
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enables them to transfer raw animal skins into leather. Real tanning is described as 

the cross linking of the skin’s collagen chains, while false tanning involves the filling 

of hollow spaces between the skin’s collagen chains (Khanbabaee and van Ree, 

2001). The blue-black iron tannate complex was used by ancient Egyptians as a hair 

dye, and for many centuries, this complex was the main source of the writing inks 

(Slabbert, 1992). 

 

The petroleum crisis of the early seventies have initiated the interest in seeking a 

return to plant-based panel adhesives as economical alternatives to petrochemical 

adhesives such as phenol and urea-formaldehyde (Manas, 1982; Wheatley, 1992).  

Tannins are phenolic compounds that can be used as adhesive materials. Tannins-

formaldehyde adhesives are obtained by hardening of polymeric flavonoids of 

natural origin, of condensed tannins by polycondensation with formaldehyde (Pizzi, 

1994). Since the introduction of tannins as a substitute of phenol in the production of 

adhesive resins, many efforts have been done to improve the tannins-formaldehyde 

resins. The development from researches has led to the commercial production of 

resins of low viscosity and with reactivity at least equal to that of urea-formaldehyde 

resins. Tannins-formaldehyde adhesive resins have been applied in the production of 

plywood and particleboard and used in glulam, finger jointing, and boat construction 

(Pizzi, 1983a).  

 

Other uses of tannins are in the preservative treatment of fishing nets (Achmadi and 

Choong, 1992; Bakau, 2005); in the dyestuff industry as caustics for cationic dyes 

(tannin dyes), and also in the production of inks (iron gallate ink); in food industry to 

clarify wine, beer, and fruit juices. Other industries used tannins as textile dye, as 
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antioxidant in the fruit juices, beer, and wine industries, and as coagulant in rubber 

production. In medicinal uses tannins containing plants extracts are used as 

astringents, against diarrhea, as diuretics, against stomach and duodenal tumors, and 

as anti-inflammatory, antiseptic, and haemostatic pharmaceuticals (Khanbabaee and 

van Ree, 2001). Condensed tannins also showed some physiological effects, such as 

antioxidant, anti-allergy, anti-hypertensive and antimicrobial activities in biological 

systems (Romani et al., 2006). The antioxidant property of tannins also enables them 

to be used as alternative steel corrosion inhibitors (Loo et al., 2007; Rahim et al., 

2006).  

 

There has lately been a growing interest in biosorbents, especially tannins-based 

adsorbent for removing a low concentration of heavy metal ions from aqueous 

solutions (Kim and Nakano, 2005; Liao et al., 2004; Ogata and Nakano, 2005). The 

development of biosorbents to remove heavy metal ions from the aqueous solution is 

important to replace the conventional methods like precipitation, membrane filtration, 

electrolyte or liquid extraction, electrodialysis and reverse osmosis (Gode and 

Pehlivan, 2005; Palma et al., 2003; Vázquez et al., 2002; Yamaguchi et al., 1992). 

These conventional methods are only successfully applied to solutions with high 

concentration of heavy metal ions. At low concentration, these methods are much 

less efficient and considerably expensive (Vázquez et al., 2002). Thus, a more 

economical, easily available and effective adsorbent to remove heavy metal ions at 

low concentration by mean of sorption technique is needed. 
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1.6 Tannins-based adsorbent for heavy metal ions 

 

The presence of multi adjacent phenolic hydroxyls groups enable tannins to remove 

heavy metal ions from aqueous solution effectively (Liao et al., 2004; Nakajima, 

2002; Santana et al., 2002). The ability of tannins to complex with metal ions is due 

to the ortho-hydroxyls present in their B-rings and it was found that ion exchange 

was the main adsorption mechanism as metal cations displace the adjacent phenolic 

hydroxyl groups forming a chelate (Vázquez et al., 1994; Zhan and Zhao, 2003). 

Tannins in nature are able to react with heavy metal ions in aqueous solutions, 

however, their solubility in water restrict their function as metal ions adsorbent in 

aqueous solutions (Liao et al., 2004). In order to overcome this disadvantage, tannins 

need to be immobilized by chemical modification. This is done through the reaction 

of tannins with formaldehyde. The main role of formaldehyde in the modification 

reaction is to immobilize the phenolic polymers in the tannins so that the water is not 

dyed, and the tannins ability to adsorb metals is improved by chemical modification 

as well (Palma et al., 2003).  

 

Tannins as phenolic compounds are expected to react with formaldehyde as phenols 

under acid or base catalyzed conditions (Pizzi, 1983b). The reaction of phenol and 

tannins with formaldehyde are shown in Fig. 1.6 and 1.7, respectively. Tannins are 

reactive with formaldehyde due to the strong nucleophilic of their A-rings (Zhan and 

Zhao, 2003). Resorcinoric and phloroglucinoric nuclei of tannins A-rings ensure high 

reactivity of tannins towards formaldehyde; under parity conditions, which are 

between 10 to 50 times faster than the reaction of phenol with formaldehyde (Pizzi, 

1994). The produced tannins-based adsorbent is insoluble in water, acidic and basic 
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conditions (Shirato et al., 1994). The tannins-based adsorbent is a compound that 

consists of only carbon, hydrogen and oxygen, thus the volume after drying and 

incineration is reduced. Generally, the residue after the incineration is the oxide of 

the metal adsorbed (Matsumura and Usuda, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 
         Fig. 1.6   Typical reaction between phenol and formaldehyde under acid- or     
                         base-catalyzed condition (Pizzi, 1983b). 
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Fig. 1.7   Reaction of tannins with formaldehyde (arrow pointed are the reactive   
                sites of tannins with formaldehyde) (Pizzi, 1983b). 

 

 

1.7 Adsorption 

 

The term “adsorption” was introduced by Kayser in 1881 to connote the 

condensation of gases on free surfaces, in contra-distinction to gaseous absorption 

where the molecules of gas penetrate into the mass of the absorbing solid (Gregg and 

Sing, 1967a). Atkin and Paula (2002) have defined adsorption as the attachment of 

particles to a surface. The substance that adsorbs is the adsorbate and the underlying 

material is the adsorbent or substrate. According to Os�cik (1982a), adsorption refers 

to changing in the concentration of molecules (atoms, ions) at the surface, while 

absorption consists of the penetration of a substance from one phase into the bulk of 

another by diffusion. Adsorption processes are usually classified based on the kind of 

phases constituting the interphase, such as liquid/gas, solid/gas, solid/liquid and 

liquid/liquid, and according to the type of forces acting at this surface like physical 

adsorption (physisorption) and chemical adsorption (chemisorption). 
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Physisorption involves intermolecular forces such as van der waals forces, hydrogen 

bonds and etc. Meanwhile, chemisorption involves valency forces as a result of 

sharing of electrons by the solid (adsorbent) and the adsorbed substances (adsorbate) 

(Os�cik, 1982b). In chemisorption, the adsorbates adsorbed to the surface by forming 

a chemical (usually covalent) bond, and tend to find sites that maximize their 

coordination number with the adsorbent (Atkins and Paula, 2002). Both 

physisorption and chemisorption can be distinguished by (Os�cik, 1982b): 

 

1. Heat of adsorption – small in the case of physisorption, large (of the same 

order as the heat of the relevant chemical reaction) in the case of 

chemisorption. 

2. Reversibility – the adsorbed substance can be relatively easily removed from 

the surface when physisorption is involved; the removal of chemically 

adsorbed layer is very difficult and requires drastic measures. 

3. Thickness of adsorbed layer – in the case of physisorption, under suitable 

conditions, adsorbed layers are formed having thicknesses of several 

diameters of the adsorbate molecule; in chemisorption only monolayers are 

formed. 

 

 

1.7.1 Applications of adsorption 

 

Adsorption process has been widely applied in many fields of modern industry, 

techniques and it even play an important role in our daily life. The fundamental 
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practices applications of adsorption and related areas are as followings (Da�browski, 

2001): 

 

• Separation and purification of liquid and gas mixtures, bulk chemicals, 

isomers and air; 

• Drying gases and liquid before loading them into industrial systems; 

• Removal of impurities from liquid and gas media; 

• Recovery of chemicals from industrial and vent gases; and 

• Water purification. 

 

In petroleum industry, adsorption processes are important in purification of various 

petroleum products like fuel, oil, extraction benzenes, etc. Adsorption of proteins has 

been used in food production for a long time. New applications of the adsorbed 

proteins boost successful development of biotechnology, pharmacology and 

medicine, determining the usefulness of novel drugs and the control of drug 

administrations. In laboratory practice, adsorption technique is used in 

chromatography for analysis and separation mixtures with simultaneous evolution of 

high purity components. Adsorption also plays a significant role in neutralization of 

waste gases and sewages and at the same time capturing the valuable components 

found in the waste. In water treatment, adsorption plays an important role in removal 

of trace heavy metal ions such as Cd, Cr, Hg, Cu, Fe, V, Zn and Ni. The adsorption-

related separation methods like ion-exchange are an important part of the effective 

removal of heavy metal ions and radioactive wastes from liquid media. Compared 

with other methods, adsorption allows for the most thorough purification of raw 

materials with relatively low cost (Da�browski, 2001). 
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1.8 Ion exchange process 

 

The removal of metal ions from the aqueous solutions is basically based on the ion 

exchange process. This process takes place at the solid/electrolyte solution interface 

and is referred to as ion exchange (Os�cik, 1982c).The term “ion exchange” can be 

defined as the reversible interchange of ions between a liquid phase and solid, 

involving no radical change in the structure of the solid. Depending upon the ionic 

charge of the exchanging ions, the process maybe cation exchange or anion exchange 

(Mantell, 1951).  

 

Cation exchange maybe carried out according to the salt cycle or the hydrogen cycle. 

In salt or sodium cycle, the adsorbent is employed in the sodium form and therefore 

exchanges sodium ions for other metals. Hydrogen cycle is defined as the complete 

course of cation exchange in which the adsorbent is employed in the hydrogen or 

free-acid form and therefore releases hydrogen ions to the solution and uptake the 

metallic ions. Both sodium and hydrogen cycles in the cation exchange process can 

be illustrated by Eqs. (1.1) and (1.2), respectively. 

 

CaZNaZNaCa + →←+ ++ 22
2              (1.1) 

 

ZNaHZHNa 22 22 + →←+ ++               (1.2) 

 

where Z = cation exchanger 
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