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INTERPOLASI BERPARAMETER KE ATAS DATA TERSEBAR 
 

ABSTRAK 
 

Dua skema interpolasi berparameter yang mengandungi interpolasi global 

untuk data tersebar am dan interpolasi pengekalan-kepositifan setempat data tersebar 

positif dibincangkan. Skema-skema ini telah dibina menggunakan tampalan-

tampalan segi tiga Bézier cebis demi cebis.  

Skema pertama membincangkan pembinaan kaedah interpolasi global 

berasaskan ukuran kesaksamaan norma kelengkungan utama yang akan mnjana satu 

permukaan bernorma kelengkungan utama minimum. Permukaan ini terdiri daripada 

segi tiga Bézier kuartik cebis demi cebis yang memenuhi kekangan-kekangan 

interpolasi sempadan tampalan dan juga memberikan kebebasan  kepada sebahagian 

daripada titik-titik kawalan untuk digunakan sebagai pembagusan permukaan.    

Fungsi objektif ditakrifkan sebagai fungsian bentuk kuadratik dan nilai 

ekstremum bagi fungsian ini terhadap syarat-syarat keselanjaran C1 merentasi sisi-

sisi sepunya dan pada bucu-bucu segi tiga akan diperoleh. Kaedah pengoptimum 

dengan pendaraban Lagrange digunakan bagi mendapatkan titik-titik Bézier anu 

untuk keseluruhan jaringan segi tiga dan permukaan-permukaan interpolasi optimum 

dapat dibina.    

Skema kedua membincangkan interpolasi pengekalan-kepositifan setempat 

untuk data tersebar positif menggunakan tampalan-tampalan segi tiga Bézier cebis 

demi cebis dengan mengenakan batas bawah ordinat-ordinat Bézier. Skema 

pengekalan-kepositifan teritlak untuk segi tiga Bézier darjah-n diterbitkan dan 

interpolasi pengekalan-kepositifan C2 kuintik menggunakan kaedah gabungan 

cembung  yang memerlukan input sehingga terbitan-terbitan separa peringkat kedua 

pada titik-titik data telah dibina. Batas bawah bagi ordinat-ordinat Bézier pada setiap 
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segi tiga diumpukkan nilai yang sama. Pendekatan ini telah diperluas kepada 

masalah interpolasi berkekangan yang meliputi permukaan-permukaan kekangan 

sehingga polinomial berdarjah lima.   

Kami juga mencadangkan interpolasi pengekalan-kepositifan C1 kubik baru 

dengan memberikan lebih kelenturan ke atas batas bawah ordinat-ordinat Bézier, 

yang mana ordinat-ordinat sisi untuk tampalan segi tiga diubahsuai secara bebas 

manakala ordinat dalam bersandar kepada ordinat-ordinat sisi. Pendekatan baru ini 

menghasilkan masalah  pengoptimum dengan kekangan. 

Contoh-contoh grafik menggunakan fungsi-fungsi ujian terkenal dan data 

sebenar telah dipersembahkan. 
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PARAMETRIC INTERPOLATION TO SCATTERED DATA 
 

ABSTRACT 
 
 

Two schemes of parametric interpolation consisting of a global scheme to 

interpolate general scattered data and a local positivity-preserving scheme to 

interpolate positive scattered data are described. These schemes are constructed using 

piecewise triangular Bézier patches. 

The first scheme deals with the construction of a global interpolating method 

based on fairness measure of principal curvature norm that will generate a final 

surface with minimized principal curvature norm. The final surface comprises of 

piecewise quartic Bézier triangles which satisfy the patch boundary interpolation 

constraints as well as allow certain freedom to some of their control points used in 

surface fairing. 

An objective function is defined using a quadratic functional form and the 

extremum of this functional with respect to the C1 continuity conditions along the 

shared edges and vertices of triangle is obtained. A Lagrange multiplier optimization 

method is used to obtain the unknown Bézier points for the entire triangular mesh 

and subsequently optimizes the interpolating surface which is then generated. 

  The second scheme describes a local positivity-preserving interpolation to 

positive scattered data using piecewise Bézier triangular patches by imposing a lower 

bound on the Bézier ordinates. The generalised positivity-preserving scheme for 

triangular Bézier patch of n degree is derived and a C2 quintic positivity-preserving 

interpolation using a convex combination method with inputs up to the second order 

partial derivatives at data points is constructed. The lower bound of all Bézier 

ordinates in a corresponding triangle (except for the vertices) are assigned the same 
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value. This approach is then extended to the constrained interpolation problem by 

allowing polynomials of up to degree five as constraint surfaces.  

We also suggest a new C1 cubic positivity-preserving interpolation by 

imposing more flexibility on the lower bound of Bézier ordinates, where the edge 

ordinates of a triangular patch are adjusted independently while the inner ordinate 

depends on these edge ordinates. This new approach leads to a constrained 

optimization problem. 

Examples are illustrated graphically using well-known test functions and 

actual data. 
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CHAPTER 1 
 INTRODUCTION  

 
 
Scattered data interpolation refers to the problem of fitting smooth surfaces 

through a non-uniform distribution of data points. In practise, this subject is very 

important in various sciences and engineering where data are often measured or 

generated at sparse and irregular positions. The goal of interpolation is to construct 

underlying functions which may be evaluated at certain set of positions.  There are 

various principal sources of scattered data, for examples measured value of physical 

quantities such as in geology, meteorology, oceanography, cartography and mining; 

experimental results in sciences and engineering; computational values in various 

applications of computer graphics and vision with functional data; medical imaging 

and others. Numerous interpolation methods with many variants have been devised 

to solve the problem of scattered data interpolation in two or more independent 

variables. They have been addressed in many papers and book chapters (see [91], [5], 

[29], [30], [24], [32], [28], [63]) that are dispersed in various scientific disciplines. It 

should be noted that the concepts involved in scattered data interpolation are largely 

inspired from the fundamental concepts in the interpolation of regularly spaced data. 

       

1.1 Interpolation to General Scattered Data 

The different approaches to the interpolant schemes of scattered data can be 

classified into global methods, in which each interpolated value is influenced by all 

the data, and local methods, in which the interpolated value is only influenced by the 

values at nearby points from the scattered point set. Global methods are practically 

limited to small data sets due to the computational efforts they require; moreover, an 

addition or deletion of a data point, or a correction in any of the coordinates of a data 
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point, will modify the interpolated values throughout the entire domain of definition. 

Local methods, on the other hand, are capable of treating much larger data sets, and 

they are less sensitive to data modifications, but they may become quite complex, 

too, if a smooth result is required. 

One of the earliest interpolating schemes was based on inverse distance 

weighting of data developed by Shepard [93] which is known as Shepard’s method. 

Shepard defined a C0 interpolant as a weighted average of the data with weights 

being inversely proportional to distance.  This method suffers from several defect 

including cusp, corners and flat spots at data points as well as undue influence of 

points which are far away. In addition, it is a global scheme requiring all the weights 

to be recomputed if any data point is added, removed or modified.  To address these 

deficiencies, Franke and Nielson [29], introduced a C1 interpolant scheme by 

modifying this quadratic Shepard’s method, which is also known as Modified 

Shepard’s Method. This variation modifies the weighting function by only 

considering the points lying in a disc with radius and centered at the point of 

evaluation. The modification improves the earlier Shepard’s method in addressing 

the preservation of the shape near the data points and in making it to be local to a 

neighbourhood point.       

 Another popular approach is to define the interpolant as a linear combination 

of radially symmetric basis functions each centered at a data point. The radial 

interpolant is translation and rotation invariant. The unknown coefficients for the 

basis functions are determined by solving a linear system of equations where the 

coefficient matrix is always full, but may become poorly conditioned and require 

preconditioning for a large data set (see [19], [20]). The popular choice for the basis 

functions is due to its very well performed in practical application including 
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Gaussian and multiquadratics ([45]),  shifted log ([32], [47]) and thin plate splines 

([31], [64]). The previous two methods mentioned do not involve any prior meshing 

that is  rectangulation or triangulation step and can be thought of as meshless. 

  Another way to construct an interpolant to general scattered data is to 

triangulate the domain data points in the plane and construct piecewise parametric or 

geometric continous interpolant on each triangle.  This method is referred to as 

triangulation-based method and is one of the main objectives of this thesis. Piecewise 

or rational interpolants of low degree using triangular Bézier patches representation 

are very popular and successful for arbitrary scattered data. Bézier triangles are 

extensively used in the area of Computer Aided Geometric Design with an excellent 

description of Bézier curves and surfaces given in Farin [24].    Each triangular patch 

bounded by three curves is filled in by one or more polynomial or rational surface 

patches in such a way that the overall surface is of parametric or geometric 

continuous. The main challenge to implement this scheme is to construct a smooth 

interpolant of low degree with as few pieces as possible. There are several major 

approaches to fill these triangular patches. 

The first approach is a polynomial interpolating method given by Farin [24]. 

Farin constructed a piecewise polynomial interpolant over a triangulation that 

generates C r surfaces. Each interpolant is local and determined by the linear or non-

linear functionals that are defined over one triangle only. Generally, a local 

interpolant is a polynomial of degree that depend on r which interpolates to all its 

derivatives of up to order r of some primitive function f at the vertices of a 

triangulation. Based on a well-known finite element method called condensation of 

parameters, Whelan [99] presented a C2  piecewise nonic  interpolants of condensed 

and uncondensed schemes using Berstein-Bézier method. The constructed interpolant 
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requires only vertex data and its derivatives which have seventh degree polynomial 

precision for condensed scheme and ninth degree polynomial for the uncondensed 

scheme.  Whelan's interpolation scheme is more useful in the area of finite element 

analysis as compared to in the other areas. 

  Another approach was based on the discrete-triangular method ([3], [62]). 

Alfeld and Barnhill [3] proposed a transfinite C2 interpolation scheme through the 

discretization of the transfinite scheme by deriving two different finite dimensional 

C2 interpolants which is rather complicated. This approach was further studied by 

Liu and Zhu [62] who also described a characterization of certain C2 discrete 

triangular interpolants. They created two different C2 discrete triangular interpolants 

i.e. with quintic precision and with cubic precision respectively, which are much 

more concise in their forms as compared to those by Alfeld and Barnhill, and hence 

more convenient for practical use. Moreover, these interpolants are of explicit forms, 

therefore need not have to solve a linear system and are easy to calculate and 

analyze. 

The next popular method of filling the triangular patches is a split-triangle 

method known as Clough-Tocher interpolant which has been widely discussed in 

Farin ([23], [24]) and Alfeld [2]. Each macro-triangle is split into three triangles by 

inserting a point in the interior of the triangle and then connect it to the three vertices 

of original triangle. This splitting technique therefore fits three patches for each 

triangle. Splitting allows the data along each boundary to be matched independently 

of the data on the other two boundaries. This method uses bivariate cubic 

polynomials within each triangle. Hence, the key idea behind the Clough–Tocher’s 

method is to split each cubic polynomial patch into three cubic polynomial 

subpatches in order to satisfy the C1 continuity constraints with neighbours. 
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Specifically, a cubic Bézier patch is defined over each mini-triangle. This technique 

has been used to construct three polynomials of degree four per triangle hole with G1 

continuity ([95], [51]) and with C1 continuity ([76]). 

 Another method of split-triangle is known as Powell-Sabin split ([80]). The 

method produces C1 piecewise quadratic interpolants to C1 data at vertices of a 

triangulated data. Each triangle patch is splitted into six or twelve mini-triangles 

determined by triangle geometry. For the case of a six-triangle split, the macro 

triangle is split by joining the centre of the circumscribed circle to edge midpoints. 

Otherwise in twelve-triangle split, the macro-triangle is split by joining its centroid to 

the edge midpoints and by joining the edge midpoints to one another. Then, 

piecewise quadratic patch is built on each mini-triangle in order to satisfy C1 

continuity constraints with its neighbours.    

       Recently, Hahmann and Bonneau [43] introduced a new interpolation method 

that avoids undulations, even when interpolating irregular triangulations. This 

method allows free choice of all first derivatives at each input vertex, along each 

input edge. Each input triangle is regularly subdivided into four sub-triangles and a 

degree 5 Bézier patch is associated to each of the sub-triangles. These four Bézier 

patches are referred to as a macro-patch. Inside a macro-patch, the four Bézier 

patches are connected with C1 continuity while the macro-patches are themselves 

connected with G1 continuity.  

An alternative method to fill the triangular patch without splitting the triangle 

is by a convex-combination method which will be used throughout this thesis. This 

interpolation scheme creates one single patch per hole. First, three patches are 

constructed, each of which interpolates part of the boundary data. Then a convex 

combination of the three patches is formed in such a way that the resulting patch 
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interpolates all the data. The convex combination method typically utilizes rational 

weight functions ([69], [46], [61]) and therefore produces rational interpolants. 

Gregory [37] was the first to introduce the convex combination method in Computer 

Aided Geometric Design and later on was further developed in Gregory [38] ,and 

Charrot and Gregory  [16]. These methods are based upon the combination of 

interpolation operators consisting of univariate interpolation along the lines parallel 

to the sides of a triangle. 

Besides the above-mentioned works, Nielson [69] presented a side-vertex 

method for constructing a curved triangular patch using combination of three 

interpolating operators, each satisfying the given interpolation conditions at a vertex 

and its opposite sides. Hagen [40] developed a method of constructing geometric 

surface patches based on Nielson’s approach and the results have been generalized to 

triangular surface patches with first and second order geometric continuity in Hagen 

and Pottmann [41], and  Nielson [72].   

Moreover, in the scattered data interpolation area, Foley and Optiz [27], and 

Goodman and Said [35] independently developed a C1 cubic triangular convex 

combination scheme. Chang and Said [15] further extended this approach to C2 

quintic triangular surface scheme that requires up to the second-order partial 

derivative values.  Most recently, Zhang and Cheng [101] described a new method 

for constructing C1 triangular patches that interpolates a given boundary curve and 

cross-boundary slopes by blending three side-vertices of Nileson’s interpolation 

operator [69] with a new interior operation operator based on three quartic curves. 

Thus, this approach presents a method to construct a curved triangular patch by 

combining four interpolating operators and the constructed triangular patch which 

reproduced polynomial surfaces of degree four. 
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One of the major findings to fill a triangular hole using a local interpolant 

method is that most of these schemes suffer from similar shape defects caused 

mainly by the construction of boundary curves. Shape defects in boundary curves 

such as flatness seems to be propagated inward resulting in the flat spots of the 

surfaces ([63]).  One way to overcome this problem is to use several global 

optimality fairness criteria based on variational principle method which have been 

introduced. It allows the design of very smooth surfaces satisfying a number of 

interpolation constraints.  The important point of the method is to choose a suitable 

objective function, whose value is determined by the variables that also determine 

the surface shape (e.g., the control points of a Bézier surface). An objective function 

must attains a minimum value when the shape variables assume values that 

correspond. The fairness criteria of surfaces such as principal curvature, Gaussian 

curvature, mean curvature, absolute curvature or principal curvature norm ([100]) 

were used as the objective functions to be minimized.  These criteria can be 

described in terms of the distribution of its second and higher order derivatives, 

preferably expressed as geometrically invariant surface properties. There is a large 

number of curve and surface fairing techniques that uses some degree of 

optimization.   

In the case of scattered data interpolation, Nielson [70] introduced the 

minimum-norm network (MNN) using a linear energy term to produce a C1 cubic 

network and resulting C1 surface. Nielson’s method is further extended by Pottmann 

[78] who produced the generalization of MNN to C r surface.  The essential part of 

the Pottmann’s method is the use of a variational principle to define the function 

values as well as cross-boundary derivatives over the edges of a triangulation of the 

data points. Based on earlier works by [70] and [78], Kolb and Seidel [53] generated 
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a triangular network of curves that interpolates the data points at the vertices of the 

network. A C2 surface is constructed over the network where the shape can be 

controlled parametrically and the resulting surface has a uniform appearance i.e. the 

use of triangular patches with no negative effects on the curvature distribution of the 

surface as a whole.  

 Saraga [86] presented a method for constructing a G1 smooth surface 

composing of independently parametrized triangular polynomial Bézier patches 

where all the patches are treated uniformly as having degree 8, to fit scattered data 

points triangulated in R3 with arbitrary topology. In order to optimize the shape of a 

surface, a minimum value of an integral expression or functional of a known function 

is obtained that depends (not necessarily explicitly) on an unknown function and 

some of its derivatives subject to the special conditions along the boundary of the 

global domain. 

In this thesis, we propose another simple global interpolating method to fill 

the triangular patches based on  fairness measure  of principal curvature norm, which 

lead us to surfaces which we called surfaces with minimized principal curvature 

norm.  We will find an extremum of the integral function in terms of the quadratic 

form of functionals with respect to the C1 or G1 continuity conditions along shared 

edges and vertices of a triangle. A single quartic Bézier triangular patch is used for 

this construction. 

 

1.2 Interpolation to Positive Scattered Data 

The interpolating methods that we have discussed usually ignore the shape 

property such as monotonicity ([18], [33], [48], [87], [88], [89]),  positivity ([7], [8], 

[12], [49], [68], [74], [75], [90]) or convexity ([10], [11], [13], [14], [60]) of data 
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points. Thus, we need to add this characteristic to one of its main conditions and 

strengthen the chance of preserving the shape of the function. This method is known 

as shape preserving interpolation where the constructed interpolants obey the shape 

of the given monotonic, positive and/or convex data. This is a step further regarding 

the interpolation method as it can fit the shape much better and closer to the given 

data function than the classical method. Many researchs on shape preserving 

interpolation methods have been pursued, for example, those on quadratic spline 

methods ([92], [66], [55]), cubic splines method ([33]) and rational quadratic splines 

method ([18]). Some of these methods have also been extended to surface fitting.  

The main focus on shape preserving interpolation in this thesis is on the 

preservation of the positivity of data points. The problem of positivity preserving 

interpolation or the interpolation to positive data by a positive function, is often of 

interest. This problem could arise if one has data points on one side of a plane, and 

wishes to have an interpolating surface which is also on the same side of this plane. 

The significance of positivity lies in the fact that sometimes it does not make sense to 

talk of some quantity to be negative. For example, in the area of scientific 

visualization and interpolation of measurements such as rainfall, percentage of mass 

concentration in a chemical reaction, volume and mass of something which would be 

meaningless when it is negative. Various methods concerning visualization of 

positive data of curves and surfaces can be found in the literature (see for example 

[90], [34], [73],  [7],  [8], [9], [74], [12],  [54], [75]).  

Amongst these works, visualisation of positive data using bivariate functions 

defined on rectangular or triangular meshes can be found for example in Brodlie et 

al. [8],  Ong and Wong [74], Chan and Ong [12], and  Piah et al. [75].  Brodlie et al. 

[8] derived sufficient conditions to ensure a positive piecewise bicubic interpolant is 
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obtained for positive data. The approach is based on the results of Schmidt and Hess 

[90] for the univariate case. Specifically, it looks at the problem of constructing a 

piecewise bicubic function from data on a rectangular mesh, such that this function is 

non-negative (positive). Sufficient conditions for positivity are derived in terms of 

the first partial derivatives and mixed partial derivatives at the grid points. These 

conditions form the basis of a positive interpolation algorithm.  Ong and Wong [74] 

described a local C1 positivity preserving scheme on triangular mesh using side 

vertex method for interpolation. The rational cubics are used for univariate 

interpolation along the line segments joining a vertex to opposite edge of a triangle. 

The weights of the rational cubics are chosen by using the corresponding univariate 

results on non-negativity in Goodman et al. [34]. The interpolating surface is a 

convex combination of three triangular patches. Chan and Ong [12] also described a 

local C1 non-negative preserving scheme for scattered data defined as piecewise 

convex combination of cubic triangular Bézier patches. Sufficient conditions for non-

negativity of a cubic Bézier triangle are derived and these conditions prescribe lower 

bounds to the Bezier ordinates. This is done by imposing the same lower bound value 

for the edge (other than the vertices) and inner Bézier ordinates.  Non-negativity is 

achieved by modifying if necessary the first order partial derivatives at the data sites.  

Piah et al. [75] followed similar approach as in Chan and Ong [12] but offers more 

relaxed sufficient conditions which are easier to compute on the ordinates of the 

Bézier control points.  

Constraining surfaces to be positive everywhere that interpolates ungridded 

data has received less attention compared with preserving positivity of curves and 

surfaces that interpolate gridded data. Thus, motivated by earlier works of Chan and 

Ong [12], and Piah et al. [75], we shall focus on positivity preserving of surface data 
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defined on ungridded data using triangular patch in this thesis. We will derive 

sufficient positivity-preserving conditions on Bézier triangular patches and construct 

bivariate positivity preserving C2 quintic interpolants to scattered data using convex 

combination method. However, the disadvantage of this scheme and previous two 

schemes ([12], [75]) is that the inner and edge Bézier ordinates are assigned the same 

lower bound. Thus, we are also proposing a new scheme for a C1 positivity-

preserving scheme using cubic triangular Bézier patch by deriving sufficient 

conditions for the lower bound of the edge ordinates to be adjusted independently 

and the inner Bézier ordinate depends on the edge ordinates while maintaining the 

positivity of the triangular patches.  

The construction of C1 cubic and C2 quintic interpolating surfaces which are 

only constrained to lie above the xy-plane might not be enough if we often have some 

additional information that we wish to build into the reconstruction which must lie 

within a specific range although we already know the data points are positive.  

Various methods concerning visualization of constrained interpolants using bivariate 

functions can be found. Mulansky and Schmidt [68] constructed a constrained C1 

interpolant using quadratic splines on a Powell–Sabin refinement of the original 

triangulation. Brodlie et al. [8], Ong and Wong [74], Chan and Ong [12] also 

generalised their results to that of an interpolant subjects to any linear constraint, that 

is, above or below any plane besides the xy-plane. Indeed the surface can be 

constrained in-between two given planes. Recently Brodlie et al. [9] discussed the 

problem of visualizing data where the underlying constraints must be preserved. 

They have shown how the modified quadratic Shepard method, which interpolates 

scattered data of any dimension, can be constrained to preserve positivity. This is 

done by forcing the quadratic basis functions to be positive. The method can be 
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extended to handle other types of constraints, including lower bound of 0 and upper 

bound of 1 as occurs with fractional data. A further extension allows general range 

restrictions, creating an interpolant that lies between any two specified functions as 

the lower and upper bounds.    Most of these methods have been done on C1 smooth 

surfaces but little effort has been spared for C2 smooth surfaces which have very 

significant applications in CAGD. Hence, we will extend our proposed C2 quintic 

positivity scheme to include a larger set of constraint surfaces besides the plane         

z = 0.  

 

1.3 Thesis Outline 

   The main work in this thesis focuses on parametric continuous interpolants to 

functional scattered data by a new global method and the construction of new 

positivity preserving interpolation schemes including constrained interpolation which 

are defined on triangular patches. However, we also discuss the geometric 

continuous interpolants for scattered data as a global approach to fill a triangular 

patch.   

In Chapter 2, we review some of the materials that will be used in later 

chapters. Some of the materials reviewed are triangulation of data points, methods of 

gradient estimation, triangular Bézier patch representation and smoothness 

conditions.  

In Chapter 3, we review the works by Goodman and Said [35], Foley and 

Optiz [27] and Chang and Said [15] for local convex combination method to fill a 

triangular patch.  

In Chapter 4, we will describe our proposed global parametric and geometric 

continuous interpolants using fairness surface criteria based on principal curvature 
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norm. The construction of positivity-preserving interpolation will be discussed in 

Chapter 5 including the implementations of the generalised positivity-preserving 

scheme using C2 quintic Bézier triangular patches and a new improved positivity-

preserving scheme using C1 cubic Bézier triangular patches. The implementation of 

these proposed methods using actual meteorological and geoscience data will be 

given. 

 The construction of a new C2 quintic constrained interpolation is discussed in 

Chapter 6.  Finally, Chapter 7 presents the conclusion and possible research to be 

pursued beyond the scope of this thesis.  
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CHAPTER 2 
BACKGROUND  

 
 
2.1  Introduction 

This chapter will provide the background knowledge required for the rest of 

this thesis. We begin by describing a triangulation of data points using Delaunay 

triangulation in Section 2.2. The gradient estimation methods at vertices of triangles 

are discussed in Section 2.3. Section 2.4 gives representation of a Bezier triangular 

patch. Finally, the parametric and geometric continuity between adjacent triangular 

patches are discussed in Section 2.5.  

 

2.2 Triangulation of Data Points 

Triangulation is a fundamental problem in computational geometry, because 

the first step in working with complicated geometrical objects is to break them into 

simple geometrical objects. The simplest geometrical objects are triangles in two 

dimensions, and tetrahedra in three dimensions. Classical applications of 

triangulation include finite element analysis and computer graphics. A triangulation 

of a set of   points n
iiii yxvV 1)},({ ===   consists of vertices, edges (connecting two 

vertices) and faces (connecting three vertices). The triangulation must satisfy the 

following properties.  

1. The union of all faces including the boundary is the convex hull of all 

vertices.  

2. The intersection of two triangles is either empty, or a common vertex, or a 

common edge. 

3. If v is a boundary vertex, then exactly two boundary edges meet at v. 
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One of the popular method for triangulation of data points is the Delaunay 

triangulation. This triangulation is a dual of a Voronoi diagram. The Voronoi 

diagram of a point set V = {v1, v2, . . . , vn} is a subdivision of the plane with the 

property that each Voronoi cell of vertex vi, V(vi ) contains all locations that are 

closer to vi than to every other vertex of V. The vertices V are also called Voronoi 

generators. Each edge of a Voronoi cell is the bisector of the connection of vi to the 

corresponding neighbouring cell. Each intersection of Voronoi edges belongs to at 

least three Voronoi cells and is the centre of the circle through the generators of these 

three cells. Delaunay triangulation can be achieved from a Voronoi diagram by 

connecting vertices, whose regions in the Voronoi diagram intersect (see [6] for 

further details). Figures 2.1(a) - 2.1(c) show an example of a Voronoi diagram with 

32 vertices of interest and its corresponding Delaunay triangulation. The result of 

using the Delaunay scheme is the triangulation that maximized the minimum angles 

of all triangles. In other words, in a Delaunay triangulation, the circle that 

circumscribes three vertices of any triangle contains no other vertices as shown in 

Figure 2.1(d). It can be seen that the circle C1 does not include vertex v4, while the 

circle C2 does not contain vertex v1.  

There exist several different techniques for constructing a Delaunay 

triangulation of a given scattered points such as flipping algorithm ([94]), 

randomized incremental insertion algorithm ([39]), incremental construction 

algorithm ([21], [22]), divide-and-conquer algorithm ([17]) and plane sweep 

algorithm ([26]). In this thesis, we shall use a built-in function (delaunay(x,y)) in 

MATLAB software which is based on  Fortune’s  plane sweep algorithm ([26]) for 

Voronoi diagram to triangulate a given 2D data points. 
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(a)                                                               (b)          

      

(c)                                                               (d) 

 
Figure 2.1. (a) Voronoi diagram (b) Delaunay triangulation with its Voronoi 
diagram  (c) Delaunay triangulation (d) Concept of Delaunay triangulation. 

                                        

2.3 Gradient Estimation Methods 

There are several methods in the literature which can be used to estimate the 

gradients at data points in the plane. Most of the methods known in the literature for 

numerical evaluation of the partial derivatives of a function are the least-squares 

minimization methods ([81], [58]),  weighted average of the slopes of planes through 

some of the prescribed function values ([1], [52]) and convex combination of 

derivatives on all triangular planes of which the point is a vertex ([36]). In this 

section we will discuss the method of convex combination ([36]) to estimate first 

order derivatives at vertices of triangle which is used in this thesis due to its 

simplicity to handle, stability, requires less computation times and has comparable 

accuracy to the other mentioned methods of gradient estimation. However the 

v3 

v1 

C1 

C2 

v4 

v2 
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drawback of this method is that it is only applicable for first order derivatives 

estimation but not for second and higher order derivatives estimate. Thus, for the 

second order partial derivatives estimation, we shall use method based on least 

squares minimization with best fitting quadric surface. These two methods are 

described as follows. 

2.3.1 Convex Combination Method ([36]) 

  First assume that a node V is in the interior of the triangulation domain and let     

iT , 1=i , . . . , k  where k is the number of triangles in the triangulation mesh which 

have V as a vertex (see Figure 2.2, for k  =  5).  

 

Figure 2.2. Triangles in a triangulation (k  =  5) 
 
 

For 1=i , . . . , k, we denote ig  as the gradient of the linear interpolant to the data at 

vertices of iT . The gradient of function F at V, 
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where Ai, 1=i , … , k denotes the area of the triangle iT .                                            
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Suppose that a triangle iT  has vertices ),( i
j

i
j yx  with corresponding data 

values .3,2,1, =jz j  Then the linear interpolant to these points is a plane 

kidzcybxa iiii ,...,1,0 ==+++  where ai, bi and ci are components of the 

plane’s normal vector (Figure 2.3). 

 

 

 

 

 

 

 
Figure 2.3. Vector plane of linear interpolant to the data at vertices 
of  Ti 

 

The normal vector of the plane is n  =  u x v  =  ai i + bi j + ci k where 
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When V is a node on the boundary of the domain (Figure 2.4), the estimated gradient 

is   
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where i = 1, . . . , k, 'iA  is the area of 'iT  and 'ig  is the gradient of the linear 

interpolant over 'iT  with 'iT  is the triangle not containing V  but shares the edge of 

iT . (2.3) also can be expressed as   
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 Figure  2.4. Node V on the boundary of the domain 
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2.3.2 Method Based on Least Square Minimization ( [81] ) 

We can interpolate the current data point and approximate its nearest 

neighbours with a simple known surface such as a sphere, an ellipsoid, or a quadric 

surface. This surface can be found by well-known least squares minimization 

technique. The partial derivative at current data point is then defined to be the partial 

derivatives of this approximation surface at that point. In this thesis, we will use best-

fitting quadratic surfaces defined as 

                               eydxcybxyaxyxf ++++= 22),( + f                                      (2.5) 

where a, b, c, d, e and f are the coefficients to be determined.  

Let the vertex P0 of the triangular mesh surrounded by vertices                       

P1(x1, y1), P2 (x2, y2), . . . , Pk(xk, yk) and the height of the vertices {P0, P1, . . . , Pk} 

are represented by {z0, z1, . . . , zk} as shown in Figure 2.5. We turn our attention to 

the vertex which corresponds to P0(x0, y0). Other vertices can be dealt with in a 

similar way. We can derive the first and second order partial derivative at P0 as              

Fx(P0) = 2ax0 + by0 + d,  Fy(P0) = bx0 + 2cy0 + e, ,2af xx =  cf yy 2= and  .bf xy =            

 

 

 

 

 

 

                                   

Figure 2.5. k vertices surrounding vertex P0 
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Substitute P0, P1, . . . , Pk and z0, z1, . . . , zk  in (2.5), we obtain a linear system 

                                 Uc = z                                                                                    (2.6) 

where         
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Theorem 2.1.    

Consider the (m x n) system Ax = b  

(a) The associated system ATAx = AT b is always consistent 

(b) The least-squares solutions of Ax = b are precisely  the solutions of  ATAx = AT b 

(c) The least square solution is unique if and only if rank A = n.        

Proof of the Theorem 2.1 can be found in Johnson et al. ([50]). Applying the above 

theorem on (2.6), the values of a, b, c, d, e and f   can be obtained, that is, 

                      c = (UT U) -1UT z                                                                                (2.7) 

and the values of Fx, Fy, Fxx, Fyy, Fxy at vertex P0 can then be calculated. 

Note that, if matrix U in (2.6)  is in the form of  rank deficient matrix  (that is 

rank of U is less than number of unknowns) or the number of points surrounding P0 

is less than five, we can approximate the solution (2.7) by using the pseudo-inverse 

of U  in the least square method (see [50] for further details). 
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2.4 Representation with Bézier Triangular Patches 

A review of the basic mathematics of Bézier triangular patch as described in 

Farin [24] will be given in this section.  

 

2.4.1 Barycentric Coordinates 

Since we are working with triangles, we will utilise barycentric coordinates 

rather than Cartesian coordinates. Let T be a triangle with vertices Vi = (xi, yi),            

i = 1, 2, 3 (Figure 2.6). Any point V = (x, y) 2R∈  can be expressed as 

                                           V  =  rV1 + sV2 + tV3                                                     (2.8) 

where r + s + t = 1 that is equivalent to a linear system 

                                                   Ax = b                                                                   (2.9) 
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The point V is said to have barycentric coordinates (r, s, t) with respect to triangle T.  

 Solving (2.9) using Cramer’s rule, we obtain 

                   
∆

−+−−−
=

)()()( 23233232 xxyyyxxyyx
r                                       (2.10) 

                  
∆

−+−−−
=

)()()( 13133131 xxyyyxxyyx
s                                          (2.11) 

                  
∆

−+−−−
=
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t .                                       (2.12) 

where ∆ is a determinant of A. From (2.10)-(2.12), it is apparent that each of the 

barycentric coordinates is a linear polynomial in x and y. Note that, the interior of the 

triangle is characterised by the additional restriction, r, s, t > 0.  
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Figure 2.6. Barycentric coordinates 

 

2.4.2 Bézier Triangular Patches 

Bézier Triangular patches or Bézier triangles are the true generalisation of 

Bézier curves to a surface form. In practice, the tensor product Bézier patch have 

received more attention due to their prevalent use in industry. However, triangular 

patches have much to offer. One important offering is the ability to model objects 

with arbitrary topology especially for the problem of fitting smooth surfaces to 

scattered data. A degree-n Bézier triangular patch P on T is defined as 

                       ),,(),,(

0,0,0

tsrBbtsrP

kji
nkji

n
ijkijkn ∑

≥≥≥
=++

=                                                  (2.13)    

where bijk are the Bézier ordinates or control points of P  and 

                  kjin
ijk tsr

kji
ntsrB

!!!
!),,( =  , i + j + k = n, .0,, ≥kji                       (2.14)                 

are bivariate Bernstein basis polynomials of degree-n relative to triangle T. Equation 

(2.14) is indeed bivariate because one variable is dependent on the other two,             

t = 1 - r - s. 
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V2 (x2, y2)  V3 (x3, y3) 

s = 0 
t = 0 

 r = 0 

V(x, y) 
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2.4.3 Derivatives of Bézier Triangular Patches 

We also need a formula for the derivative of P(r, s, t). For a given direction 

represented by the vector ,0),,,( 321321 =++= ddddddd the directional derivative    

                          
t
Pd

s
Pd

r
PdtsrPDd ∂

∂
+

∂
∂

+
∂
∂

= 321),,( . 

In general l-th order derivative of P(r, s, t) is, ( [59] ) 

         ),,()(
)!(

!),,( ,,,, tsrBdC
ln

ntsrPD ln
kji

lnkji

l
kji

l
d l

−

−=++
∑−

=                                    (2.15) 

where ),,(,, tsrB ln
kji

− is (2.14) and  

         )()()()( 1
1,,3

1
,1,2

1
,,11,, dCddCddCddC m

kji
m

kji
m

kji
m

kji
−
+

−
+

−
+ ++=                               (2.16) 

with .,)( ,,
0

,, nkjibdC kjikji =++=  

Also its lth mixed directional derivative with respect to directions d = (d1, d2, d3) and          

e = (e1, e2, e3), e1 +  e2 +  e3 = 0  is,  ( [15] ) 

),,()()(
)!(

!

),,(

,,,,,,,,
21

2

654

1

321

21
2654

1321

635241

21

tsrBeBdBb
lln

n

tsrPD
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kji

ll

lnkji

lll
l
l

kji

l
ed ll

−

−=++

=+
=++
=++

++++++∑ ∑−−

=

λλλλλλ

λλλ
λλλ

λλλλλλ
(2.17) 

where ),,(and)(),( ,,,,,,
2

654

1

321
tsrBeBdB ln

kji
ll −

λλλλλλ are given by (2.14). 

 

2.5 Smoothness Conditions  

In order to create a smooth surface through the data points there must be a 

smooth transition from one patch to another across all shared edges and thus the 

certain smoothness conditions need to be satisfied.  The derivation and further details 

of smoothness criteria given in this section can be found in Farin ([24], [25]) and    

Lai [56].  

 




